-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChapter9_2.py
49 lines (41 loc) · 1.96 KB
/
Chapter9_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from __future__ import division, print_function, unicode_literals
import os
import tensorflow as tf
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.preprocessing import StandardScaler
from datetime import datetime
housing = fetch_california_housing()
m, n = housing.data.shape
housing_data_with_bias = np.c_[np.ones((m,1)), housing.data]
now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
root_logdir = "tf_logs"
logdir = "{}/run-{}/".format(root_logdir, now)
learning_rate = 0.01
n_features = n
X = tf.placeholder(tf.float32, shape=(None, n + 1), name="X")
y = tf.placeholder(tf.float32, shape=(None, 1), name="y")
theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")
error = y_pred - y
mse = tf.reduce_mean(tf.square(error), name="mse")
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)
init = tf.global_variables_initializer()
mse_summary = tf.summary.scalar('MSE', mse)
file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())
def relu(X):
"""This code defines the relu() function, creates the relu threshold variable,
builds 5 relus. It reuses the relu threshold variable for each"""
with tf.variable_scope("relu", reuse=True):
threshold = tf.get_variable("threshold")
w_shape = (int(X.get_shape()[1]), 1)
w = tf.Variable(tf.random_normal(w_shape), name="weights")
b = tf.Variable(0.0, name="bias")
z = tf.add(tf.matmul(X, w), b, name="z")
return tf.maximum(z, threshold, name="max")
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
with tf.variable_scope("relu"): # Create the variable
threshold = tf.get_variable("threshold", shape=(), initializer=tf.constant_initializer(0.0))
relus = [relu(X) for relu_index in range(5)]
output = tf.add_n(relus, name="output")