-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChapter_13_Q7v3.py
142 lines (116 loc) · 5.77 KB
/
Chapter_13_Q7v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from __future__ import division, print_function, unicode_literals
import numpy as np
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/")
height = 28
width = 28
channels = 1
n_inputs = height * width
conv1_fmaps = 32
conv1_ksize = 3
conv1_stride = 1
conv1_pad = "SAME"
conv2_fmaps = 64
conv2_ksize = 3
conv2_stride = 1
conv2_pad = "SAME"
conv2_dropout_rate = 0.25
pool3_fmaps = conv2_fmaps
n_fc1 = 128
n_fc2 = 128
fc1_dropout_rate = 0.5
n_outputs = 10
with tf.name_scope("inputs"):
X = tf.placeholder(tf.float32, shape=[None, n_inputs], name="X")
X_reshaped = tf.reshape(X, shape=[-1, height, width, channels])
y = tf.placeholder(tf.int32, shape=[None], name="y")
training = tf.placeholder_with_default(False, shape=[], name='training')
def convolution_layer(input, filter, kernel_size, strides, padding, activation, name):
conv_layer = tf.layers.conv2d(input, filter=filter, kernel_size=kernel_size,
strides=strides, padding=padding,
activation=activation, name=name)
return conv_layer
conv1 = convolution_layer(X_reshaped, filters=conv1_fmaps, kernel_size=conv1_ksize,
strides=conv1_stride, padding=conv1_pad,
activation=tf.nn.relu, name="conv1")
conv2 = convolution_layer(conv1, filters=conv2_fmaps, kernel_size=conv2_ksize,
strides=conv2_stride, padding=conv2_pad,
activation=tf.nn.relu, name="conv2")
# print("Convolutional layer 2 generated with: {%i} feature maps, {%i} kernel size, {%i} stride size, {%s} padding".format(conv2_fmaps, conv2_ksize, conv2_stride, conv2_pad) )
with tf.name_scope("pooling layer 3"):
pool3 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")
pool3_flat = tf.reshape(pool3, shape=[-1, pool3_fmaps * 14 * 14])
pool3_flat_drop = tf.layers.dropout(pool3_flat, conv2_dropout_rate, training=training)
print("Pooling layers created...")
with tf.name_scope("Fully-connected layer 1"):
fc1 = tf.layers.dense(pool3_flat_drop, n_fc1, activation=tf.nn.relu, name="fc1")
fc1_drop = tf.layers.dropout(fc1, fc1_dropout_rate, training=training)
print("Fully-connected layer created. Dropout rate: {}%".format(fc1_dropout_rate*100))
with tf.name_scope("Fully-connected layer 2"):
fc2 = tf.layers.dense(fc1, n_fc2, activation=tf.nn.relu, name="fc2")
fc2_drop = tf.layers.dropout(fc1, fc1_dropout_rate, training=training)
with tf.name_scope("output"):
logits = tf.layers.dense(fc2, n_outputs, name="output")
Y_proba = tf.nn.softmax(logits, name="Y_proba")
with tf.name_scope("train"):
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y)
loss = tf.reduce_mean(xentropy)
optimizer = tf.train.AdamOptimizer()
training_op = optimizer.minimize(loss)
print("Loss, optimizer, and training operation defined...")
with tf.name_scope("eval"):
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
with tf.name_scope("init_and_save"):
init = tf.global_variables_initializer()
saver = tf.train.Saver()
print("Variables Initialized...")
def get_model_params():
"""Gets the current model's state by collecting the values of the model's variables/parameters"""
gvars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
return {gvar.op.name: value for gvar, value in zip(gvars, tf.get_default_session().run(gvars))}
def restore_model_params(model_params):
"""Restores the previous state of a model"""
gvar_names = list(model_params.keys())
assign_ops = {gvar_name: tf.get_default_graph().get_operation_by_name(gvar_name + "/Assign")
for gvar_name in gvar_names}
init_values = {gvar_name: assign_op.inputs[1] for gvar_name, assign_op in assign_ops.items()}
feed_dict = {init_values[gvar_name]: model_params[gvar_name] for gvar_name in gvar_names}
tf.get_default_session().run(assign_ops, feed_dict=feed_dict)
n_epochs = 1000
batch_size = 50
best_loss_val = np.infty
check_interval = 500
checks_since_last_progress = 0
max_checks_without_progress = 20
best_model_params = None
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
for iteration in range(mnist.train.num_examples // batch_size):
X_batch, y_batch = mnist.train.next_batch(batch_size)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch, training: True})
if iteration % check_interval == 0:
loss_val = loss.eval(feed_dict={X: mnist.validation.images,
y: mnist.validation.labels})
if loss_val < best_loss_val:
best_loss_val = loss_val
checks_since_last_progress = 0
best_model_params = get_model_params()
else:
checks_since_last_progress += 1
acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})
acc_val = accuracy.eval(feed_dict={X: mnist.validation.images,
y: mnist.validation.labels})
print("Epoch {}, train accuracy: {:.4f}%, valid. accuracy: {:.4f}%, valid. best loss: {:.6f}".format(epoch, acc_train * 100, acc_val * 100, best_loss_val))
if checks_since_last_progress > max_checks_without_progress:
print("Early stopping!")
break
if best_model_params:
restore_model_params(best_model_params)
acc_test = accuracy.eval(feed_dict={X: mnist.test.images,
y: mnist.test.labels})
print("Final accuracy on test set: {:.2f}%".format(acc_test*100))
save_path = saver.save(sess, "./my_mnist_model")