-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathFeature-Extraction.py
234 lines (220 loc) · 9.91 KB
/
Feature-Extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import librosa
import numpy as np
import pandas as pd
from os import listdir
from os.path import isfile, join
'''
function: extract_features
input: path to mp3 files
output: csv file containing features extracted
This function reads the content in a directory and for each mp3 file detected
reads the file and extracts relevant features using librosa library for audio
signal processing
'''
def extract_feature(path):
id = 1 # Song ID
feature_set = pd.DataFrame() # Feature Matrix
# Individual Feature Vectors
songname_vector = pd.Series()
tempo_vector = pd.Series()
total_beats = pd.Series()
average_beats = pd.Series()
chroma_stft_mean = pd.Series()
chroma_stft_std = pd.Series()
chroma_stft_var = pd.Series()
chroma_cq_mean = pd.Series()
chroma_cq_std = pd.Series()
chroma_cq_var = pd.Series()
chroma_cens_mean = pd.Series()
chroma_cens_std = pd.Series()
chroma_cens_var = pd.Series()
mel_mean = pd.Series()
mel_std = pd.Series()
mel_var = pd.Series()
mfcc_mean = pd.Series()
mfcc_std = pd.Series()
mfcc_var = pd.Series()
mfcc_delta_mean = pd.Series()
mfcc_delta_std = pd.Series()
mfcc_delta_var = pd.Series()
rmse_mean = pd.Series()
rmse_std = pd.Series()
rmse_var = pd.Series()
cent_mean = pd.Series()
cent_std = pd.Series()
cent_var = pd.Series()
spec_bw_mean = pd.Series()
spec_bw_std = pd.Series()
spec_bw_var = pd.Series()
contrast_mean = pd.Series()
contrast_std = pd.Series()
contrast_var = pd.Series()
rolloff_mean = pd.Series()
rolloff_std = pd.Series()
rolloff_var = pd.Series()
poly_mean = pd.Series()
poly_std = pd.Series()
poly_var = pd.Series()
tonnetz_mean = pd.Series()
tonnetz_std = pd.Series()
tonnetz_var = pd.Series()
zcr_mean = pd.Series()
zcr_std = pd.Series()
zcr_var = pd.Series()
harm_mean = pd.Series()
harm_std = pd.Series()
harm_var = pd.Series()
perc_mean = pd.Series()
perc_std = pd.Series()
perc_var = pd.Series()
frame_mean = pd.Series()
frame_std = pd.Series()
frame_var = pd.Series()
# Traversing over each file in path
file_data = [f for f in listdir(path) if isfile (join(path, f))]
for line in file_data:
if ( line[-1:] == '\n' ):
line = line[:-1]
# Reading Song
songname = path + line
y, sr = librosa.load(songname, duration=60)
S = np.abs(librosa.stft(y))
# Extracting Features
tempo, beats = librosa.beat.beat_track(y=y, sr=sr)
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr)
chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr)
melspectrogram = librosa.feature.melspectrogram(y=y, sr=sr)
rmse = librosa.feature.rmse(y=y)
cent = librosa.feature.spectral_centroid(y=y, sr=sr)
spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
contrast = librosa.feature.spectral_contrast(S=S, sr=sr)
rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
poly_features = librosa.feature.poly_features(S=S, sr=sr)
tonnetz = librosa.feature.tonnetz(y=y, sr=sr)
zcr = librosa.feature.zero_crossing_rate(y)
harmonic = librosa.effects.harmonic(y)
percussive = librosa.effects.percussive(y)
mfcc = librosa.feature.mfcc(y=y, sr=sr)
mfcc_delta = librosa.feature.delta(mfcc)
onset_frames = librosa.onset.onset_detect(y=y, sr=sr)
frames_to_time = librosa.frames_to_time(onset_frames[:20], sr=sr)
# Transforming Features
songname_vector.set_value(id, line) # song name
tempo_vector.set_value(id, tempo) # tempo
total_beats.set_value(id, sum(beats)) # beats
average_beats.set_value(id, np.average(beats))
chroma_stft_mean.set_value(id, np.mean(chroma_stft)) # chroma stft
chroma_stft_std.set_value(id, np.std(chroma_stft))
chroma_stft_var.set_value(id, np.var(chroma_stft))
chroma_cq_mean.set_value(id, np.mean(chroma_cq)) # chroma cq
chroma_cq_std.set_value(id, np.std(chroma_cq))
chroma_cq_var.set_value(id, np.var(chroma_cq))
chroma_cens_mean.set_value(id, np.mean(chroma_cens)) # chroma cens
chroma_cens_std.set_value(id, np.std(chroma_cens))
chroma_cens_var.set_value(id, np.var(chroma_cens))
mel_mean.set_value(id, np.mean(melspectrogram)) # melspectrogram
mel_std.set_value(id, np.std(melspectrogram))
mel_var.set_value(id, np.var(melspectrogram))
mfcc_mean.set_value(id, np.mean(mfcc)) # mfcc
mfcc_std.set_value(id, np.std(mfcc))
mfcc_var.set_value(id, np.var(mfcc))
mfcc_delta_mean.set_value(id, np.mean(mfcc_delta)) # mfcc delta
mfcc_delta_std.set_value(id, np.std(mfcc_delta))
mfcc_delta_var.set_value(id, np.var(mfcc_delta))
rmse_mean.set_value(id, np.mean(rmse)) # rmse
rmse_std.set_value(id, np.std(rmse))
rmse_var.set_value(id, np.var(rmse))
cent_mean.set_value(id, np.mean(cent)) # cent
cent_std.set_value(id, np.std(cent))
cent_var.set_value(id, np.var(cent))
spec_bw_mean.set_value(id, np.mean(spec_bw)) # spectral bandwidth
spec_bw_std.set_value(id, np.std(spec_bw))
spec_bw_var.set_value(id, np.var(spec_bw))
contrast_mean.set_value(id, np.mean(contrast)) # contrast
contrast_std.set_value(id, np.std(contrast))
contrast_var.set_value(id, np.var(contrast))
rolloff_mean.set_value(id, np.mean(rolloff)) # rolloff
rolloff_std.set_value(id, np.std(rolloff))
rolloff_var.set_value(id, np.var(rolloff))
poly_mean.set_value(id, np.mean(poly_features)) # poly features
poly_std.set_value(id, np.std(poly_features))
poly_var.set_value(id, np.var(poly_features))
tonnetz_mean.set_value(id, np.mean(tonnetz)) # tonnetz
tonnetz_std.set_value(id, np.std(tonnetz))
tonnetz_var.set_value(id, np.var(tonnetz))
zcr_mean.set_value(id, np.mean(zcr)) # zero crossing rate
zcr_std.set_value(id, np.std(zcr))
zcr_var.set_value(id, np.var(zcr))
harm_mean.set_value(id, np.mean(harmonic)) # harmonic
harm_std.set_value(id, np.std(harmonic))
harm_var.set_value(id, np.var(harmonic))
perc_mean.set_value(id, np.mean(percussive)) # percussive
perc_std.set_value(id, np.std(percussive))
perc_var.set_value(id, np.var(percussive))
frame_mean.set_value(id, np.mean(frames_to_time)) # frames
frame_std.set_value(id, np.std(frames_to_time))
frame_var.set_value(id, np.var(frames_to_time))
print(songname)
id = id+1
# Concatenating Features into one csv and json format
feature_set['song_name'] = songname_vector # song name
feature_set['tempo'] = tempo_vector # tempo
feature_set['total_beats'] = total_beats # beats
feature_set['average_beats'] = average_beats
feature_set['chroma_stft_mean'] = chroma_stft_mean # chroma stft
feature_set['chroma_stft_std'] = chroma_stft_std
feature_set['chroma_stft_var'] = chroma_stft_var
feature_set['chroma_cq_mean'] = chroma_cq_mean # chroma cq
feature_set['chroma_cq_std'] = chroma_cq_std
feature_set['chroma_cq_var'] = chroma_cq_var
feature_set['chroma_cens_mean'] = chroma_cens_mean # chroma cens
feature_set['chroma_cens_std'] = chroma_cens_std
feature_set['chroma_cens_var'] = chroma_cens_var
feature_set['melspectrogram_mean'] = mel_mean # melspectrogram
feature_set['melspectrogram_std'] = mel_std
feature_set['melspectrogram_var'] = mel_var
feature_set['mfcc_mean'] = mfcc_mean # mfcc
feature_set['mfcc_std'] = mfcc_std
feature_set['mfcc_var'] = mfcc_var
feature_set['mfcc_delta_mean'] = mfcc_delta_mean # mfcc delta
feature_set['mfcc_delta_std'] = mfcc_delta_std
feature_set['mfcc_delta_var'] = mfcc_delta_var
feature_set['rmse_mean'] = rmse_mean # rmse
feature_set['rmse_std'] = rmse_std
feature_set['rmse_var'] = rmse_var
feature_set['cent_mean'] = cent_mean # cent
feature_set['cent_std'] = cent_std
feature_set['cent_var'] = cent_var
feature_set['spec_bw_mean'] = spec_bw_mean # spectral bandwidth
feature_set['spec_bw_std'] = spec_bw_std
feature_set['spec_bw_var'] = spec_bw_var
feature_set['contrast_mean'] = contrast_mean # contrast
feature_set['contrast_std'] = contrast_std
feature_set['contrast_var'] = contrast_var
feature_set['rolloff_mean'] = rolloff_mean # rolloff
feature_set['rolloff_std'] = rolloff_std
feature_set['rolloff_var'] = rolloff_var
feature_set['poly_mean'] = poly_mean # poly features
feature_set['poly_std'] = poly_std
feature_set['poly_var'] = poly_var
feature_set['tonnetz_mean'] = tonnetz_mean # tonnetz
feature_set['tonnetz_std'] = tonnetz_std
feature_set['tonnetz_var'] = tonnetz_var
feature_set['zcr_mean'] = zcr_mean # zero crossing rate
feature_set['zcr_std'] = zcr_std
feature_set['zcr_var'] = zcr_var
feature_set['harm_mean'] = harm_mean # harmonic
feature_set['harm_std'] = harm_std
feature_set['harm_var'] = harm_var
feature_set['perc_mean'] = perc_mean # percussive
feature_set['perc_std'] = perc_std
feature_set['perc_var'] = perc_var
feature_set['frame_mean'] = frame_mean # frames
feature_set['frame_std'] = frame_std
feature_set['frame_var'] = frame_var
# Converting Dataframe into CSV Excel and JSON file
feature_set.to_csv('Emotion_features.csv')
feature_set.to_json('Emotion_features.json')
# Extracting Feature Function Call
extract_feature('Dataset/')