-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathGenerateCrunchbasePADS.R
712 lines (586 loc) · 33.2 KB
/
GenerateCrunchbasePADS.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
# Generate Crunchbase PADS
# Author: Jitender Aswani, Co-Founder @datadolph.in
# Date: 3/15/2013
# Copyright (c) 2011, under the Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) License
# For more information see: https://creativecommons.org/licenses/by-nc/3.0/
# All rights reserved.
source("CreatePADS.R")
library("reshape2")
#
# loadCompaniesStats
#
loadCompaniesStats <- function(){
stats <- readFile(paste(folder.path, comps.file, sep=""))
if(!is.na(stats)){
# get col indexes that need to be converted to date
cols <- c(grep("founded_at", colnames(stats)), grep("first_funding_at", colnames(stats)),
grep("last_funding_at", colnames(stats)),
grep("last_milestone_at", colnames(stats)))
#stats[cols] <- as.Date(as.character(as.matrix(stats[cols])), format="%m/%d/%y")
stats[cols] <- llply(stats[cols], as.Date, "%m/%d/%y")
#stats[cols] <- llply(stats[cols], as.Date, "%Y-%m-%d")
# get col indexes that need to be converted to numeric
#cols <- c(grep("founded_year", colnames(stats)), grep("funded_year", colnames(stats)),
# grep("last_milestone_year", colnames(stats)))
#stats[cols] <- as.numeric(as.matrix(stats[cols]))
# generate years
stats$founded_year <- year(stats$founded_at)
stats$first_funding_year <- year(stats$first_funding_at)
stats$last_funding_year <- year(stats$last_funding_at)
stats$last_milestone_year <- year(stats$last_milestone_at)
# numeric after removing commas
stats$funding_total <- as.numeric(gsub(",", "", stats$funding_total, fixed=T))
stats$funding_rounds <- as.numeric(gsub(",", "", stats$funding_rounds, fixed=T))
#remove rows that do not have funding info
stats <- stats[!is.na(stats$funding_total),]
#remove unwanted columns
cols <- c(grep("permalink", colnames(stats)), grep("country_code", colnames(stats)))
stats <- stats[-cols]
# now get the data.table
companies.stats <- data.table(stats)
setkeyv(companies.stats, c("category_code", "status", "city", "region", "founded_year", "last_funding_year"))
assign("companies.stats", companies.stats, envir=.GlobalEnv)
}
}
#
# load companies rounds
#
loadCompanyRounds <- function(){
stats <- readFile(paste(folder.path, comps.rounds.file, sep=""))
if(!is.na(stats)){
# get col indexes that need to be converted to date
cols <- c(grep("funded_at", colnames(stats)))
stats[cols] <- llply(stats[cols], as.Date, "%m/%d/%y")
# generate years
stats$funded_year <- year(stats$funded_at)
stats <- stats[complete.cases(stats),]
stats$funded_day=as.character(factor(weekdays(stats$funded_at), levels=lDays))
stats$funded_month=as.character(factor(months(stats$funded_at), levels=lMonths))
stats$funded_quarter=as.character(quarters(stats$funded_at))
# numeric after removing commas
stats$funding_amount <- as.numeric(gsub(",", "", stats$total_usd, fixed=T))
#remove rows that do not have funding info
stats <- stats[!is.na(stats$funding_amount),]
#remove unwanted columns
cols <- c(grep("permalink", colnames(stats)), grep("country_code", colnames(stats)),
grep("entity_type", colnames(stats)), grep("status", colnames(stats)),
grep("total_usd", colnames(stats)))
stats <- stats[-cols]
# now get the data.table
comp.rounds.stats <- data.table(stats)
setkeyv(comp.rounds.stats, c("name", "category_code", "type", "city", "region", "funded_year", "funded_at"))
assign("comp.rounds.stats", comp.rounds.stats, envir=.GlobalEnv)
}
}
#
# load companies rounds
#
loadInvestosStats <- function(){
stats <- readFile(paste(folder.path, investors.file, sep=""))
colnames(stats) <- tolower(colnames(stats))
if(!is.na(stats)){
# get col indexes that need to be converted to date
cols <- c(grep("funded_at", colnames(stats)))
stats[cols] <- llply(stats[cols], as.Date, "%m/%d/%y")
# generate years
stats$funded_year <- as.factor(year(stats$funded_at))
# numeric after removing commas
stats$funding_amount <- as.numeric(gsub(",", "", stats$received.usd, fixed=T))
#remove rows that do not have funding info
stats <- stats[!is.na(stats$funding_amount),]
#remove unwanted columns
cols <- c(grep("permalink", colnames(stats)), grep("investor_status", colnames(stats)),
grep("company_country", colnames(stats)),
grep("received.usd", colnames(stats)))
stats <- stats[-cols]
# now get the data.table
investor.stats <- data.table(stats)
setkeyv(investor.stats, c("investor", "type", "funded_year", "funded_at"))
assign("investor.stats", investor.stats, envir=.GlobalEnv)
}
}
#
# initialize
#
startup <- function() {
#initialize system
initializeSystem(0)
assign("folder.path", "./pads/raw-data/crunchbase/", envir=.GlobalEnv)
assign("comps.file", "cb_companies_june_2013.csv", envir=.GlobalEnv)
assign("comps.rounds.file", "cb_companies_rounds.csv", envir=.GlobalEnv)
assign("investors.file", "cb_investors.csv", envir=.GlobalEnv)
assign("dataset", "crunchbase", envir=.GlobalEnv)
#assign("verbose", TRUE, envir=.GlobalEnv)
loadCompaniesStats()
loadCompanyRounds()
loadInvestosStats()
#prepare pad meta data
series <- list()
series["source"] <- "CrunchBase"
series["category"] <- "Financial Sector"
series["subcategory"] <- "Investment"
series["tags"] <- tolower(paste(series$source, "VC, venture capital, startups, US startups, investments, angel, series-a, series-b, series-c, funding, seed, biotech, ecommerce, enterprise, software, mobile, web", sep=","))
series["pagetag"] <- "crunchbase"
series["desc"] <- "Built using data from CrunchBase extracted on June 6, 2013."
assign("series", series, envir=.GlobalEnv)
}
#
# cleanup - command-option-0
#
cleanup <- function(){
cleaupSystem()
}
generateStartupPADS <- function(){
companies.stats <- companies.stats[first_funding_year <= 2013]
min.year <- min(companies.stats$first_funding_year, na.rm=T)
max.year <- max(companies.stats$last_funding_year, na.rm=T)
time.period <- paste(min.year, max.year, sep="-")
#fundings by year
series.data <- companies.stats[, list(number_of_startups_funded=nrow(.SD), funding_total=sum(funding_total, na.rm=T)), by=(funding_year=first_funding_year)][order(funding_year)]
series["title"] <- paste("Number of Startups Funded Over", time.period, sep=" ")
padify(series, series.data[,c(1,2),with=F])
#2nd
series["title"] <- paste("Funding (in USD) Received by Startups Over", time.period, sep=" ")
padify(series, series.data[,c(1,3),with=F])
#
#fundings by state
#
series.data <- companies.stats[, list(number_of_startups_funded=nrow(.SD), funding_total=sum(funding_total)), by=list(state_code)]
#remove empty
series.data <- series.data[!series.data$state==""]
series.data <- merge(series.data, states, by="state_code", all.x=T)[,state_code:=NULL][order(-number_of_startups_funded)]
series.data <- rbind(series.data[1:15,], series.data[16:nrow(series.data),
list(number_of_startups_funded=sum(number_of_startups_funded), funding_total=sum(funding_total), state_name="Others")])
#first pad
series["title"] <- paste("Number of Startups Funded Across US States Over", time.period, sep=" ")
padify(series, series.data[,c(1,3),with=F])
#second pad
series["title"] <- paste("Funding (in USD) Received by Startups Across US States Over", time.period, sep=" ")
padify(series, series.data[,c(2,3),with=F][order(-funding_total)])
#third pad - percent of startups and funding by states
series.data <- series.data[, list(state_name,
percent_of_startups=round((number_of_startups_funded/sum(number_of_startups_funded))*100,1),
percent_of_funding=round((funding_total/sum(funding_total))*100, 1))]
series["title"] <- paste("Distribution of Startups and Funding Across US States Over", time.period, sep=" ")
padify(series, series.data)
#
#fundings by region
#
series.data <- companies.stats[, list(number_of_startups_funded=nrow(.SD), funding_total=sum(funding_total)), by=list(region)][order(-number_of_startups_funded)]
#remove empty
series.data <- series.data[!series.data$region==""]
series.data <- rbind(series.data[1:15,], series.data[16:nrow(series.data),
list(region="Others", number_of_startups_funded=sum(number_of_startups_funded), funding_total=sum(funding_total))])
#first pad
series["title"] <- paste("Number of Startups Funded Across Various US Regions Over", time.period, sep=" ")
padify(series, series.data[,c(1,2),with=F])
#second pad
series["title"] <- paste("Funding (in USD) Received by Startups Across Various US Regions Over", time.period, sep=" ")
padify(series, series.data[,c(1,3),with=F][order(-funding_total)])
#third pad - percent of startups and funding by states
series.data <- series.data[, list(region,
percent_of_startups=round((number_of_startups_funded/sum(number_of_startups_funded))*100,1),
percent_of_funding=round((funding_total/sum(funding_total))*100, 1))]
series["title"] <- paste("Distribution of Startups and Funding Across Various US Regions Over", time.period, sep=" ")
padify(series, series.data)
#
#fundings by category
#
series.data <- companies.stats[category_code != "NULL"][, list(number_of_startups_funded=nrow(.SD), funding_total=sum(funding_total)), by=list(category=category_code)][order(-number_of_startups_funded)]
#first pad
series["title"] <- paste("Number of Startups Funded Across Various Categories Over", time.period, sep=" ")
padify(series, series.data[,c(1,2),with=F])
#second pad
series["title"] <- paste("Funding (in USD) Received by Startups Across Various Categories Over", time.period, sep=" ")
padify(series, series.data[,c(1,3),with=F][order(-funding_total)])
#third pad - percent of startups and funding by categories
series.data <- series.data[, list(category,
percent_of_startups=round((number_of_startups_funded/sum(number_of_startups_funded))*100,1),
percent_of_funding=round((funding_total/sum(funding_total))*100, 1))]
series["title"] <- paste("Distribution of Startups and Funding Across Various Categories Over", time.period, sep=" ")
padify(series, series.data)
#
# Fundings by categories over the years
#
# Part A
series.data <- companies.stats[category_code != "NULL"][,
list(number_of_startups_funded=nrow(.SD), funding_total=sum(funding_total)),
by=list(category=category_code, funded_year=first_funding_year)]
for(yr in unique(series.data$funded_year)){
series.data.t = series.data[funded_year==yr]
series["title"] <- paste("Number of Startups Funded Across Various Categories in", yr, sep=" ")
padify(series, series.data.t[, c(1,3), with=F][order(-number_of_startups_funded)])
series["title"] <- paste("Funding (in USD) Received by Startups Across Various Categories in", yr, sep=" ")
padify(series, series.data.t[, c(1,4), with=F][order(-funding_total)])
}
# Part B
#Fundings in a categories over the time-period
setkey(series.data, category)
for(cat in unique(series.data$category)){
series["title"] <- paste("Number of Startups Funded in", tocamel(cat), "Category Over", time.period, sep=" ")
padify(series, series.data[category==cat][,c(2,3),with=F][order(-number_of_startups_funded)])
series["title"] <- paste("Funding (in USD) Received by Startups in", tocamel(cat), "Category Over", time.period, sep=" ")
padify(series, series.data[category==cat][,c(2,4),with=F][order(-funding_total)])
}
#all categories
series.data.t <- dcast(series.data, funded_year~category, sum, value.var="total_no_of_fundings")
series["title"] <- paste("Number of Startups Funded in All Categories Over", time.period, sep=" ")
padify(series, series.data.t)
#popular categories
key.cat <- c("funded_year", "biotech", "ecommerce", "enterprise", "software", "mobile", "web")
series.data.t.s <- series.data.t[key.cat]
series["title"] <- paste("Number of Startups Funded in Most Popular Categories Over", time.period, sep=" ")
padify(series, series.data.t.s)
#mobile and web categories
key.cat <- c("funded_year", "biotech", "web")
series.data.t.s <- series.data.t[key.cat]
series["title"] <- paste("Number of Startups Funded in BioTech and Web Categories Over", time.period, sep=" ")
padify(series, series.data.t.s)
#mobile and web categories
key.cat <- c("funded_year", "web", "mobile")
series.data.t.s <- series.data.t[key.cat]
series["title"] <- paste("Number of Startups Funded in Mobile and Web Categories Over", time.period, sep=" ")
padify(series, series.data.t.s)
#recast but with funding amount
series.data.t <- dcast(series.data, funded_year~category, sum, value.var="funding_total")
#popular categories
key.cat <- c("funded_year", "biotech", "ecommerce", "enterprise", "software", "mobile", "web")
series.data.t.s <- series.data.t[key.cat]
series["title"] <- paste("Funding (in USD) Received by Startups in Most Popular Categories Over", time.period, sep=" ")
padify(series, series.data.t.s)
#mobile and web categories
key.cat <- c("funded_year", "biotech", "web")
series.data.t.s <- series.data.t[key.cat]
series["title"] <- paste("Funding (in USD) Received by Startups in BioTech and Web Categories Over", time.period, sep=" ")
padify(series, series.data.t.s)
#mobile and web categories
key.cat <- c("funded_year", "web", "mobile")
series.data.t.s <- series.data.t[key.cat]
series["title"] <- paste("Funding (in USD) Received by Startups in Mobile and Web Categories Over", time.period, sep=" ")
padify(series, series.data.t.s)
#
# Fundings by categories across states
#
# Part A
series.data <- companies.stats[category_code != "NULL"][state_code !=""][,
list(number_of_startups_funded=nrow(.SD), funding_total=sum(funding_total)),
by=list(category=category_code, state=state_code)]
for(st in unique(series.data$state)){
series.data.t = series.data[state==st]
series["title"] <- paste("Number of Startups Funded Across Various Categories in", st, "State, USA", sep=" ")
padify(series, series.data.t[, c(1,3), with=F][order(-number_of_startups_funded)])
series["title"] <- paste("Funding (in USD) Received by Startups Across Various Categories in", st, "State, USA", sep=" ")
padify(series, series.data.t[, c(1,4), with=F][order(-funding_total)])
}
# Part B
#Fundings in a categories across states
for(cat in unique(series.data$category)){
series["title"] <- paste("Number of Startups Funded in", tocamel(cat), "Category Across Top 20 States Over", time.period, sep=" ")
padify(series, series.data[category==cat][,c(2,3),with=F][order(-number_of_startups_funded)][1:20,])
series["title"] <- paste("Funding (in USD) Received by Startups in", tocamel(cat), "Category Across Top 20 States Over", time.period, sep=" ")
padify(series, series.data[category==cat][,c(2,4),with=F][order(-funding_total)][1:20,])
}
#Fundings across categories in a state by year
#series.data <- companies.stats[category_code != "NULL"][state_code !=""][,list(total_no_of_fundings=nrow(.SD)), by=list(category=category_code, state=state_code, funded_year=first_funding_year)]
#for(st in unique(series.data$state)) {
# t.series.data <- series.data[state==st]
# for(cat in unique(t.series.data$category)) {
# trim.series.data = t.series.data[category==cat][,category:=NULL][order(-total_no_of_fundings)][1:25,]
# series["title"] <- paste("Number of Startups Funded in", st, "State in", tocamel(cat), "Category", sep=" ")
# padify(series, trim.series.data)
# }
#}
# Most funded startups ever
series.data <- companies.stats[,list(total_fundings_in_usd=funding_total), by=list(company=name)][order(-total_fundings_in_usd)][1:20,]
series["title"] <- paste("Highest Funded Startups Over", time.period, sep=" ")
padify(series, series.data)
# Most funded startups 2009-2013
series.data <- companies.stats[first_funding_year>2008][,list(total_fundings_in_usd=funding_total), by=list(company=name)][order(-total_fundings_in_usd)][1:20,]
series["title"] <- paste("Highest Funded Startups Over 2009-2013", sep=" ")
padify(series, series.data)
#################
#fundings by region in CA since 1999
series.data <- companies.stats[state_code=="CA"][, list(number_of_startups_funded=nrow(.SD),
funding_total=sum(funding_total, na.rm=T)),
by=list(region=region)][order(-number_of_startups_funded)]
series.data <- rbind(series.data[1:15,], series.data[16:nrow(series.data),
list(region="Others", number_of_startups_funded=sum(number_of_startups_funded),funding_total=sum(funding_total))])
#first pad
series["title"] <- paste("Number of Startups Funded Across Various Regions in California Over", time.period, sep=" ")
padify(series, series.data[,c(1,2),with=F])
#second pad
series["title"] <- paste("Funding (in USD) Received by Startups Across Various Regions in California Over", time.period, sep=" ")
padify(series, series.data[,c(1,3),with=F][order(-funding_total)])
#third pad - percent of startups and funding by states
series.data <- series.data[, list(region,
percent_of_startups=round((number_of_startups_funded/sum(number_of_startups_funded))*100,1),
percent_of_funding=round((funding_total/sum(funding_total))*100, 1))]
series["title"] <- paste("Distribution of Startups and Funding Across Regions in California Over", time.period, sep=" ")
padify(series, series.data)
# Most funded startups by state
series.data <- companies.stats[,list(company=name, total_fundings_in_usd=funding_total), by=list(state=state_code)]
for(st in unique(series.data$state)) {
t.series.data <- series.data[state==st][,state:=NULL][order(-total_fundings_in_usd)][1:20,]
series["title"] <- paste("Highest Funded Startups in", st, "State Over", time.period, sep=" ")
padify(series, t.series.data)
}
# Most funded startups by category
series.data <- companies.stats[category_code!= "NULL"][,list(company=name, funding_total), by=list(category=category_code)]
for(cat in unique(series.data$category)){
t.series.data = series.data[category==cat][,category:=NULL][order(-funding_total)][1:20,]
series["title"] <- paste("Highest Funded Startups in", cat, "Category Over", time.period, sep=" ")
padify(series, t.series.data)
}
# Status of companies
series.data <- companies.stats[category_code!= "NULL"][,list(number_of_startups=nrow(.SD)), by=list(status)]
series["title"] <- paste("Number of Startups by Status - IPO, Closed or Acquisition", time.period, sep=" ")
padify(series, series.data)
#recast but with funding amount
series.data <- companies.stats[category_code!= "NULL"][,list(number_of_startups=nrow(.SD)), by=list(status, category=category_code)]
series.data.t <- dcast(series.data, status~category, sum, value.var="number_of_startups")
n <- colnames(series.data.t)
for(i in 2:ncol(series.data.t)){
series["title"] <- paste("Status of Startups - IPO, Closed or Acquisition - in ", tocamel(n[i]), "Category", time.period, sep=" ")
padify(series, series.data.t[c(1,i)])
}
#popular categories
key.cat <- c("status", "biotech", "ecommerce", "enterprise", "software", "mobile", "web")
series.data.t.s <- series.data.t[key.cat]
series["title"] <- paste("Status of Startups - IPO, Closed or Acquisition in Most Popular Categories", time.period, sep=" ")
padify(series, series.data.t.s)
#mobile and web categories
key.cat <- c("status", "biotech", "web")
series.data.t.s <- series.data.t[key.cat]
series["title"] <- paste("Status of Startups - IPO, Closed or Acquisition in BioTech and Web Categories", time.period, sep=" ")
padify(series, series.data.t.s)
#mobile and web categories
key.cat <- c("status", "web", "mobile")
series.data.t.s <- series.data.t[key.cat]
series["title"] <- paste("Status of Startups - IPO, Closed or Acquisition in Mobile and Web Categories", time.period, sep=" ")
padify(series, series.data.t.s)
}
# angel funding across years for CA, NY and MA
# Where are angel funded companies?
# count of angel funded companies across states
generateRoundPADS <- function(){
comp.rounds.stats <- comp.rounds.stats[funded_year <= 2013]
min.year <- min(comp.rounds.stats$funded_year, na.rm=T)
max.year <- max(comp.rounds.stats$funded_year, na.rm=T)
time.period <- paste(min.year, max.year, sep=" - ")
#fundings by type
series.data <- comp.rounds.stats[, list(number_of_startups_funded=nrow(.SD), funding_total=sum(funding_amount, na.rm=T)), by=(funding_type=type)][order(-number_of_startups_funded)]
series["title"] <- paste("Total Number of Startups Funded Across Various Rounds Over", time.period, sep=" ")
padify(series, series.data[,c(1,2),with=F])
#2nd
series["title"] <- paste("Total Funding (in USD) for Startups Across Various Rounds Over", time.period, sep=" ")
padify(series, series.data[,c(1,3),with=F][order(-funding_total)])
#series.data <- comp.rounds.stats[, list(number_of_startups_funded=nrow(.SD), funding_total=sum(funding_total, na.rm=T)), by=(funded_year=funded_year)][order(funded_year)]
#
# only work with angel-seriesc
#
stats <- comp.rounds.stats[type %in% c("series-c+", "series-b", "angel", "series-a")]
series.data <- stats[, list(number_of_startups_funded=nrow(.SD), funding_total=sum(funding_amount, na.rm=T)), by=list(funded_year=funded_year, funding_type=type)]
#reshape
series.data.t <- dcast(series.data, funded_year~funding_type, sum, value.var="number_of_startups_funded")
series["title"] <- paste("Trend for Startup Funding Across Various Rounds Over", time.period, sep=" ")
padify(series, series.data.t)
#angel fundings
series["title"] <- paste("Trend for Startup Angel Funding Over", time.period, sep=" ")
padify(series, series.data.t[,c(1,2)])
#series-a fundings
series["title"] <- paste("Trend for Startup Series-A Funding Over", time.period, sep=" ")
padify(series, series.data.t[,c(1,3)])
# Series-b fundings
series["title"] <- paste("Trend for Startup Series-B Funding Over", time.period, sep=" ")
padify(series, series.data.t[,c(1,4)])
# Series-c fundings
series["title"] <- paste("Trend for Startup Series-C Funding Over", time.period, sep=" ")
padify(series, series.data.t[,c(1,5)])
#reshape for a short time period
series.data.t <- dcast(series.data[funded_year > 2004], funded_year~funding_type, sum, value.var="number_of_startups_funded")
series["title"] <- paste("Trend for Startup Funding Across Various Rounds Since 2005", sep=" ")
padify(series, series.data.t)
# Fundings in USD
series.data.t <- dcast(series.data, funded_year~funding_type, sum, value.var="funding_total")
series["title"] <- paste("Startup Funding (in USD) Across Various Rounds Over", time.period, sep=" ")
padify(series, series.data.t)
#angel fundings
series["title"] <- paste("Angel Funding (in USD) for Startups Over", time.period, sep=" ")
padify(series, series.data.t[,c(1,2)])
#series-a fundings
series["title"] <- paste("Series-A Funding (in USD) for Startups Over", time.period, sep=" ")
padify(series, series.data.t[,c(1,3)])
# Series-b fundings
series["title"] <- paste("Series-B Funding (in USD) for Startups Over", time.period, sep=" ")
padify(series, series.data.t[,c(1,4)])
# Series-c fundings
series["title"] <- paste("Series-C Funding (in USD) for Startups Over", time.period, sep=" ")
padify(series, series.data.t[,c(1,5)])
#reshape for a short time period
series.data.t <- dcast(series.data[funded_year > 2004], funded_year~funding_type, sum, value.var="funding_total")
series["title"] <- paste("Startup Funding (in USD) Across Various Rounds Since 2005", sep=" ")
padify(series, series.data.t)
}
otherPADS <- function(){
#fundings by region in CA since 1999
series["desc"] = paste("Data based on first funding date were used for analysis.", series["desc"], sep=" ")
series.data <- companies.stats[first_funding_year > 2004][state_code=="CA"][, list(number_of_startups=nrow(.SD),
funding_total=sum(funding_total, na.rm=T)),
by=list(region=region, funding_year=first_funding_year)][order(funding_year)]
series.data.t <- dcast(series.data, funding_year~region, sum, value.var="number_of_startups")
key.cat <- c("funding_year", "Los Angeles", "San Diego","SF Bay")
series.data.t.s <- series.data.t[key.cat]
series["title"] <- paste("Trend of New Startups in Three California Regions 2005-2013", sep=" ")
# Based on First Funding Date
padify(series, series.data.t.s)
series.data.t <- dcast(series.data, funding_year~region, sum, value.var="funding_total")
key.cat <- c("funding_year", "Los Angeles", "San Diego","SF Bay")
series.data.t.s <- series.data.t[key.cat]
series["title"] <- paste("Funding (in USD) in New Startups in Three California Regions 2005-2013", sep=" ")
padify(series, series.data.t.s)
#series.data <- companies.stats[last_funding_year > 2004][state_code=="CA"][, list(number_of_startups_funded=nrow(.SD),
# funding_total=sum(funding_total, na.rm=T)),
# by=list(region=region, funding_year=last_funding_year)][order(funding_year)]
series.data <- rbind(series.data[1:15,], series.data[16:nrow(series.data),
list(region="Others", number_of_startups_funded=sum(number_of_startups_funded),funding_total=sum(funding_total))])
}
#
# generate more rounds
#
generateMoreRoundPADS <- function(){
types <- c("series-c+", "series-b", "angel", "series-a", "venture", "all")
for(i in types){
s <- comp.rounds.stats
pre <- ""
if(i != "all"){
s <- comp.rounds.stats[type==i]
pre <- tocamel(i)
}
#time period
t.p <- getTimePeriod(s$funded_at)
#by day
s.d <- s[, list(number_of_startups_funded=nrow(.SD)), by=funded_day][order(-number_of_startups_funded)]
series["title"] <- paste("Distribution of Startups", pre, "Investments Over Weekdays", t.p, sep=" ")
padify(series, s.d)
s.d <- s[, list(number_of_startups_funded=nrow(.SD)), by=funded_month][order(-number_of_startups_funded)]
series["title"] <- paste("Distribution of Startups", pre, "Investments Over Months", t.p, sep=" ")
padify(series, s.d)
#by quarter
s.d <- s[, list(number_of_startups_funded=nrow(.SD)), by=funded_quarter][order(-number_of_startups_funded)]
series["title"] <- paste("Distribution of Startups", pre, "Investments Over Quarters", t.p, sep=" ")
padify(series, s.d)
}
types <- c("series-c+", "series-b", "angel", "series-a")
s <- comp.rounds.stats[type %in% types]
#time period
t.p <- getTimePeriod(s$funded_at)
#by day
s.d <- s[, list(number_of_startups_funded=nrow(.SD)), by=list(funded_day, type)]
s.d.c <- data.table(dcast(s.d, funded_day ~ type, sum, value.var="number_of_startups_funded"))
s.d.c$funded_day <- factor(s.d.c$funded_day, levels= lDays)
s.d.c <- s.d.c[order(funded_day)]
s.d.c$funded_day <- as.character(s.d.c$funded_day)
series["title"] <- paste("Distribution of Startups Investments for Various Rounds Over Weekdays", t.p, sep=" ")
padify(series, s.d.c)
s.d <- s[, list(number_of_startups_funded=nrow(.SD)), by=list(funded_month, type)]
s.d.c <- data.table(dcast(s.d, funded_month ~ type, sum, value.var="number_of_startups_funded"))
s.d.c$funded_month <- factor(s.d.c$funded_month, levels= lMonths)
s.d.c <- s.d.c[order(funded_month)]
s.d.c$funded_month <- as.character(s.d.c$funded_month)
series["title"] <- paste("Distribution of Startups Investments for Various Rounds Over Months", t.p, sep=" ")
padify(series, s.d.c)
s.d <- s[, list(number_of_startups_funded=nrow(.SD)), by=list(funded_quarter, type)]
s.d.c <- data.table(dcast(s.d, funded_quarter ~ type, sum, value.var="number_of_startups_funded"))
series["title"] <- paste("Distribution of Startups Investments for Various Rounds Over Quarters", t.p, sep=" ")
padify(series, s.d.c)
#
#generate pads for companies
#
s.d <- comp.rounds.stats[!(name %in% c("#NAME?", "#waywire"))][, list(funded_at, funding_amount,
type, funded_day, funded_month, funded_quarter), by=name]
s.d <- rbind(s.d, list("GoodData", as.Date("06/12/2013", format="%m/%d/%Y"), "series-c+", 22000000, "Wednesday", "June", "Q2"))
for(i in unique(s.d$name)){
s.d.t <- s.d[name==i]
company <- tocamel(removeMetaChars(i))
print(i)
if(nrow(s.d.t) == 1){
series["title"] <- paste("Investment Round (in USD) for Startup", company, sep=" ")
padify(series, s.d.t[, c(3,4), with=F])
} else {
series["title"] <- paste("Investment Rounds (in USD) for Startup", company, sep=" ")
padify(series, s.d.t[, c(3,4), with=F])
if(nrow(s.d.t) > 3){
series["title"] <- paste("Investment Rounds (in USD) for Startup", company, "Over", getTimePeriod(s.d.t$funded_at), sep=" ")
padify(series, s.d.t[, c(2,3), with=F][order(funded_at)])
#by day
s.d.t.1 <- s.d.t[, list(investment_rounds=nrow(.SD)), by=funded_day][order(-investment_rounds)]
series["title"] <- paste("Distribution of Investments Round for Startup", company, "Over Weekdays", sep=" ")
padify(series, s.d.t.1)
#by months
s.d.t.1 <- s.d.t[, list(investment_rounds=nrow(.SD)), by=funded_month][order(-investment_rounds)]
series["title"] <- paste("Distribution of Investments Round for Startup", company, "Over Months", sep=" ")
padify(series, s.d.t.1)
#by quarter
s.d.t.1 <- s.d.t[, list(investment_rounds=nrow(.SD)), by=funded_quarter][order(-investment_rounds)]
series["title"] <- paste("Distribution of Investments Round for Startup", company, "Over Quarter", sep=" ")
padify(series, s.d.t.1)
}
}
}
}
#
# add key stats
#
addKeyStats <- function(){
# addPageStat("crunchbase", prettyNum(length(unique(investor.stats$investor)),big.mark = ","), "Number of Investors")
# addPageStat("crunchbase", prettyNum(length(unique(companies.stats$name)),big.mark = ","),
# "Number of Startups")
# addPageStat("crunchbase", paste("$",
# prettyNum(sum(companies.stats$funding_total, rm.na=T),big.mark = ","),
# sep=""), "in Funding Raised")
# addPageStat("crunchbase", prettyNum(nrow(companies.stats[status=="acquired"]),big.mark = ","),
# "Startups Got Acquired")
#
# addPageStat("crunchbase", prettyNum(nrow(companies.stats[status=="ipo"]),big.mark = ","),
# "Startups Went IPO")
#
# addPageStat("crunchbase", prettyNum(nrow(companies.stats[status=="unknown"]),big.mark = ","),
# "Startups in Unknown Status")
addPageStat("crunchbase", paste("$", prettyNum(investor.stats[, list(funding_amount= sum(funding_amount, na.rm=T)), by=investor][which.max(funding_amount)]$funding_amount,big.mark = ",")
,sep=""), paste("invested by",
investor.stats[, list(funding_amount= sum(funding_amount, na.rm=T)), by=investor][which.max(funding_amount)]$investor, sep=" "))
addPageStat("crunchbase", prettyNum(investor.stats[, list(fundings=nrow(.SD)),
by=investor][which.max(fundings)]$fundings ,big.mark = ","),
paste("startups funded by", investor.stats[, list(fundings=nrow(.SD)),
by=investor][which.max(fundings)]$investor, sep=" "))
addPageStat("crunchbase", investor.stats[type=="angel"][, list(fundings= nrow(.SD)), by=investor][which.max(fundings)]$investor,
paste("made most angel investments:", investor.stats[type=="angel"][, list(fundings= nrow(.SD)), by=investor][which.max(fundings)]$fundings, sep=" "))
}
runCB <- function(){
# Start the clock!
ptm <- proc.time()
# initialize
startup()
#generateStartupPADS()
#generateRoundPADS()
# update pad count
updateCatPadCount()
#cleanup
cleanup()
# Stop the clock
proc.time() - ptm
}
#delete few things - be careful - this will remove all pads from mongodb and remove the cache entirely
deleteFewThings <- function() {
initializeSystem(0)
cleanCacheFiles()
deletePageStat("crunchbase")
#emptySystemPads()
emptySystemPadsForCat(14)
emptyCollection(mongo.db$system.pads)
updateCatPadCount()
#cleanup
cleaupSystem()
}
#run this
#runCB()