diff --git a/Mission213Solution.ipynb b/Mission213Solution.ipynb index a5968e6..85df62e 100644 --- a/Mission213Solution.ipynb +++ b/Mission213Solution.ipynb @@ -3,9 +3,7 @@ { "cell_type": "code", "execution_count": 9, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -170,9 +168,7 @@ { "cell_type": "code", "execution_count": 10, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -210,9 +206,7 @@ { "cell_type": "code", "execution_count": 11, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -270,17 +264,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Error metric\n", + "## Error Metric\n", "\n", - "The mean squared error metric makes the most sense to evaluate our error. MSE works on continuous numeric data, which fits our data quite well." + "The mean squared error metric makes the most sense to evaluate our error. MSE works on continuous numeric data, which fits our data quite well." ] }, { "cell_type": "code", "execution_count": 13, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "train = bike_rentals.sample(frac=.8)" @@ -289,9 +281,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "test = bike_rentals.loc[~bike_rentals.index.isin(train.index)]" @@ -300,9 +290,7 @@ { "cell_type": "code", "execution_count": 18, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -332,9 +320,7 @@ { "cell_type": "code", "execution_count": 19, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -360,15 +346,13 @@ "source": [ "## Error\n", "\n", - "The error is very high, which may be due to the fact that the data has a few extremely high rental counts, but otherwise mostly low counts. Larger errors are penalized more with MSE, which leads to a higher total error." + "The error is very high, which may be due to the fact that the data has a few extremely high rental counts but otherwise mostly low counts. Larger errors are penalized more with MSE, which leads to a higher total error." ] }, { "cell_type": "code", "execution_count": 25, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -395,9 +379,7 @@ { "cell_type": "code", "execution_count": 26, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -419,9 +401,7 @@ { "cell_type": "code", "execution_count": 28, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -448,7 +428,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Decision tree error\n", + "## Decision Tree Error\n", "\n", "By taking the nonlinear predictors into account, the decision tree regressor appears to have much higher accuracy than linear regression." ] @@ -456,9 +436,7 @@ { "cell_type": "code", "execution_count": 30, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -485,9 +463,7 @@ { "cell_type": "code", "execution_count": 31, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -510,7 +486,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Random forest error\n", + "## Random Forest Error\n", "\n", "By removing some of the sources of overfitting, the random forest accuracy is improved over the decision tree accuracy." ] @@ -532,7 +508,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.8.5" } }, "nbformat": 4,