-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathlearner.py
401 lines (317 loc) · 19.2 KB
/
learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# coding=utf-8
from dynet import *
import dynet
from utils import read_conll, read_conll_predict, write_conll, load_embeddings_file
from operator import itemgetter
import utils, time, random, decoder
import numpy as np
from mnnl import FFSequencePredictor, Layer, RNNSequencePredictor, BiRNNSequencePredictor
class jPosDepLearner:
def __init__(self, vocab, pos, rels, w2i, c2i, options):
self.model = ParameterCollection()
random.seed(1)
self.trainer = AdamTrainer(self.model)
#if options.learning_rate is not None:
# self.trainer = AdamTrainer(self.model, alpha=options.learning_rate)
# print("Adam initial learning rate:", options.learning_rate)
self.activations = {'tanh': tanh, 'sigmoid': logistic, 'relu': rectify,
'tanh3': (lambda x: tanh(cwise_multiply(cwise_multiply(x, x), x)))}
self.activation = self.activations[options.activation]
self.blstmFlag = options.blstmFlag
self.labelsFlag = options.labelsFlag
self.costaugFlag = options.costaugFlag
self.bibiFlag = options.bibiFlag
self.ldims = options.lstm_dims
self.wdims = options.wembedding_dims
self.cdims = options.cembedding_dims
self.layers = options.lstm_layers
self.wordsCount = vocab
self.vocab = {word: ind + 3 for word, ind in w2i.iteritems()}
self.pos = {word: ind for ind, word in enumerate(pos)}
self.id2pos = {ind: word for ind, word in enumerate(pos)}
self.c2i = c2i
self.rels = {word: ind for ind, word in enumerate(rels)}
self.irels = rels
self.pdims = options.pembedding_dims
self.vocab['*PAD*'] = 1
self.vocab['*INITIAL*'] = 2
self.wlookup = self.model.add_lookup_parameters((len(vocab) + 3, self.wdims))
self.clookup = self.model.add_lookup_parameters((len(c2i), self.cdims))
self.plookup = self.model.add_lookup_parameters((len(pos), self.pdims))
if options.external_embedding is not None:
ext_embeddings, ext_emb_dim = load_embeddings_file(options.external_embedding, lower=True)
assert (ext_emb_dim == self.wdims)
print("Initializing word embeddings by pre-trained vectors")
count = 0
for word in self.vocab:
_word = unicode(word, "utf-8")
if _word in ext_embeddings:
count += 1
self.wlookup.init_row(self.vocab[word], ext_embeddings[_word])
print("Vocab size: %d; #words having pretrained vectors: %d" % (len(self.vocab), count))
self.pos_builders = [VanillaLSTMBuilder(1, self.wdims + self.cdims * 2, self.ldims, self.model),
VanillaLSTMBuilder(1, self.wdims + self.cdims * 2, self.ldims, self.model)]
self.pos_bbuilders = [VanillaLSTMBuilder(1, self.ldims * 2, self.ldims, self.model),
VanillaLSTMBuilder(1, self.ldims * 2, self.ldims, self.model)]
if self.bibiFlag:
self.builders = [VanillaLSTMBuilder(1, self.wdims + self.cdims * 2 + self.pdims, self.ldims, self.model),
VanillaLSTMBuilder(1, self.wdims + self.cdims * 2 + self.pdims, self.ldims, self.model)]
self.bbuilders = [VanillaLSTMBuilder(1, self.ldims * 2, self.ldims, self.model),
VanillaLSTMBuilder(1, self.ldims * 2, self.ldims, self.model)]
elif self.layers > 0:
self.builders = [VanillaLSTMBuilder(self.layers, self.wdims + self.cdims * 2 + self.pdims, self.ldims, self.model),
VanillaLSTMBuilder(self.layers, self.wdims + self.cdims * 2 + self.pdims, self.ldims, self.model)]
else:
self.builders = [SimpleRNNBuilder(1, self.wdims + self.cdims * 2, self.ldims, self.model),
SimpleRNNBuilder(1, self.wdims + self.cdims * 2, self.ldims, self.model)]
self.ffSeqPredictor = FFSequencePredictor(Layer(self.model, self.ldims * 2, len(self.pos), softmax))
self.hidden_units = options.hidden_units
self.hidBias = self.model.add_parameters((self.ldims * 8))
self.hidLayer = self.model.add_parameters((self.hidden_units, self.ldims * 8))
self.hid2Bias = self.model.add_parameters((self.hidden_units))
self.outLayer = self.model.add_parameters((1, self.hidden_units if self.hidden_units > 0 else self.ldims * 8))
if self.labelsFlag:
self.rhidBias = self.model.add_parameters((self.ldims * 8))
self.rhidLayer = self.model.add_parameters((self.hidden_units, self.ldims * 8))
self.rhid2Bias = self.model.add_parameters((self.hidden_units))
self.routLayer = self.model.add_parameters(
(len(self.irels), self.hidden_units if self.hidden_units > 0 else self.ldims * 8))
self.routBias = self.model.add_parameters((len(self.irels)))
self.ffRelPredictor = FFSequencePredictor(
Layer(self.model, self.hidden_units if self.hidden_units > 0 else self.ldims * 8, len(self.irels),
softmax))
self.char_rnn = RNNSequencePredictor(LSTMBuilder(1, self.cdims, self.cdims, self.model))
def __getExpr(self, sentence, i, j):
if sentence[i].headfov is None:
sentence[i].headfov = concatenate([sentence[i].lstms[0], sentence[i].lstms[1]])
if sentence[j].modfov is None:
sentence[j].modfov = concatenate([sentence[j].lstms[0], sentence[j].lstms[1]])
_inputVector = concatenate(
[sentence[i].headfov, sentence[j].modfov, dynet.abs(sentence[i].headfov - sentence[j].modfov),
dynet.cmult(sentence[i].headfov, sentence[j].modfov)])
if self.hidden_units > 0:
output = self.outLayer.expr() * self.activation(
self.hid2Bias.expr() + self.hidLayer.expr() * self.activation(
_inputVector + self.hidBias.expr()))
else:
output = self.outLayer.expr() * self.activation(_inputVector + self.hidBias.expr())
return output
def __evaluate(self, sentence):
exprs = [[self.__getExpr(sentence, i, j) for j in xrange(len(sentence))] for i in xrange(len(sentence))]
scores = np.array([[output.scalar_value() for output in exprsRow] for exprsRow in exprs])
return scores, exprs
def pick_neg_log(self, pred, gold):
return -dynet.log(dynet.pick(pred, gold))
def __getRelVector(self, sentence, i, j):
if sentence[i].rheadfov is None:
sentence[i].rheadfov = concatenate([sentence[i].lstms[0], sentence[i].lstms[1]])
if sentence[j].rmodfov is None:
sentence[j].rmodfov = concatenate([sentence[j].lstms[0], sentence[j].lstms[1]])
_outputVector = concatenate(
[sentence[i].rheadfov, sentence[j].rmodfov, abs(sentence[i].rheadfov - sentence[j].rmodfov),
cmult(sentence[i].rheadfov, sentence[j].rmodfov)])
if self.hidden_units > 0:
return self.rhid2Bias.expr() + self.rhidLayer.expr() * self.activation(
_outputVector + self.rhidBias.expr())
else:
return _outputVector
def Save(self, filename):
self.model.save(filename)
def Load(self, filename):
self.model.populate(filename)
def Predict(self, conll_path):
with open(conll_path, 'r') as conllFP:
for iSentence, sentence in enumerate(read_conll_predict(conllFP, self.c2i, self.wordsCount)):
conll_sentence = [entry for entry in sentence if isinstance(entry, utils.ConllEntry)]
for entry in conll_sentence:
wordvec = self.wlookup[int(self.vocab.get(entry.norm, 0))] if self.wdims > 0 else None
last_state = self.char_rnn.predict_sequence([self.clookup[c] for c in entry.idChars])[-1]
rev_last_state = self.char_rnn.predict_sequence([self.clookup[c] for c in reversed(entry.idChars)])[
-1]
entry.vec = concatenate(filter(None, [wordvec, last_state, rev_last_state]))
entry.pos_lstms = [entry.vec, entry.vec]
entry.headfov = None
entry.modfov = None
entry.rheadfov = None
entry.rmodfov = None
#Predicted pos tags
lstm_forward = self.pos_builders[0].initial_state()
lstm_backward = self.pos_builders[1].initial_state()
for entry, rentry in zip(conll_sentence, reversed(conll_sentence)):
lstm_forward = lstm_forward.add_input(entry.vec)
lstm_backward = lstm_backward.add_input(rentry.vec)
entry.pos_lstms[1] = lstm_forward.output()
rentry.pos_lstms[0] = lstm_backward.output()
for entry in conll_sentence:
entry.pos_vec = concatenate(entry.pos_lstms)
blstm_forward = self.pos_bbuilders[0].initial_state()
blstm_backward = self.pos_bbuilders[1].initial_state()
for entry, rentry in zip(conll_sentence, reversed(conll_sentence)):
blstm_forward = blstm_forward.add_input(entry.pos_vec)
blstm_backward = blstm_backward.add_input(rentry.pos_vec)
entry.pos_lstms[1] = blstm_forward.output()
rentry.pos_lstms[0] = blstm_backward.output()
concat_layer = [concatenate(entry.pos_lstms) for entry in conll_sentence]
outputFFlayer = self.ffSeqPredictor.predict_sequence(concat_layer)
predicted_pos_indices = [np.argmax(o.value()) for o in outputFFlayer]
predicted_postags = [self.id2pos[idx] for idx in predicted_pos_indices]
# Add predicted pos tags for parsing prediction
for entry, posid in zip(conll_sentence, predicted_pos_indices):
entry.vec = concatenate([entry.vec, self.plookup[posid]])
entry.lstms = [entry.vec, entry.vec]
if self.blstmFlag:
lstm_forward = self.builders[0].initial_state()
lstm_backward = self.builders[1].initial_state()
for entry, rentry in zip(conll_sentence, reversed(conll_sentence)):
lstm_forward = lstm_forward.add_input(entry.vec)
lstm_backward = lstm_backward.add_input(rentry.vec)
entry.lstms[1] = lstm_forward.output()
rentry.lstms[0] = lstm_backward.output()
if self.bibiFlag:
for entry in conll_sentence:
entry.vec = concatenate(entry.lstms)
blstm_forward = self.bbuilders[0].initial_state()
blstm_backward = self.bbuilders[1].initial_state()
for entry, rentry in zip(conll_sentence, reversed(conll_sentence)):
blstm_forward = blstm_forward.add_input(entry.vec)
blstm_backward = blstm_backward.add_input(rentry.vec)
entry.lstms[1] = blstm_forward.output()
rentry.lstms[0] = blstm_backward.output()
scores, exprs = self.__evaluate(conll_sentence)
heads = decoder.parse_proj(scores)
# Multiple roots: heading to the previous "rooted" one
rootCount = 0
rootWid = -1
for index, head in enumerate(heads):
if head == 0:
rootCount += 1
if rootCount == 1:
rootWid = index
if rootCount > 1:
heads[index] = rootWid
rootWid = index
for entry, head, pos in zip(conll_sentence, heads, predicted_postags):
entry.pred_parent_id = head
entry.pred_relation = '_'
entry.pred_pos = pos
dump = False
if self.labelsFlag:
concat_layer = [self.__getRelVector(conll_sentence, head, modifier + 1) for modifier, head in
enumerate(heads[1:])]
outputFFlayer = self.ffRelPredictor.predict_sequence(concat_layer)
predicted_rel_indices = [np.argmax(o.value()) for o in outputFFlayer]
predicted_rels = [self.irels[idx] for idx in predicted_rel_indices]
for modifier, head in enumerate(heads[1:]):
conll_sentence[modifier + 1].pred_relation = predicted_rels[modifier]
renew_cg()
if not dump:
yield sentence
def Train(self, conll_path):
eloss = 0.0
mloss = 0.0
eerrors = 0
etotal = 0
start = time.time()
with open(conll_path, 'r') as conllFP:
shuffledData = list(read_conll(conllFP, self.c2i))
random.shuffle(shuffledData)
errs = []
lerrs = []
posErrs = []
for iSentence, sentence in enumerate(shuffledData):
if iSentence % 500 == 0 and iSentence != 0:
print "Processing sentence number: %d" % iSentence, ", Loss: %.4f" % (
eloss / etotal), ", Time: %.2f" % (time.time() - start)
start = time.time()
eerrors = 0
eloss = 0.0
etotal = 0
conll_sentence = [entry for entry in sentence if isinstance(entry, utils.ConllEntry)]
for entry in conll_sentence:
c = float(self.wordsCount.get(entry.norm, 0))
dropFlag = (random.random() < (c / (0.25 + c)))
wordvec = self.wlookup[
int(self.vocab.get(entry.norm, 0)) if dropFlag else 0] if self.wdims > 0 else None
last_state = self.char_rnn.predict_sequence([self.clookup[c] for c in entry.idChars])[-1]
rev_last_state = self.char_rnn.predict_sequence([self.clookup[c] for c in reversed(entry.idChars)])[
-1]
entry.vec = dynet.dropout(concatenate(filter(None, [wordvec, last_state, rev_last_state])), 0.33)
entry.pos_lstms = [entry.vec, entry.vec]
entry.headfov = None
entry.modfov = None
entry.rheadfov = None
entry.rmodfov = None
#POS tagging loss
lstm_forward = self.pos_builders[0].initial_state()
lstm_backward = self.pos_builders[1].initial_state()
for entry, rentry in zip(conll_sentence, reversed(conll_sentence)):
lstm_forward = lstm_forward.add_input(entry.vec)
lstm_backward = lstm_backward.add_input(rentry.vec)
entry.pos_lstms[1] = lstm_forward.output()
rentry.pos_lstms[0] = lstm_backward.output()
for entry in conll_sentence:
entry.pos_vec = concatenate(entry.pos_lstms)
blstm_forward = self.pos_bbuilders[0].initial_state()
blstm_backward = self.pos_bbuilders[1].initial_state()
for entry, rentry in zip(conll_sentence, reversed(conll_sentence)):
blstm_forward = blstm_forward.add_input(entry.pos_vec)
blstm_backward = blstm_backward.add_input(rentry.pos_vec)
entry.pos_lstms[1] = blstm_forward.output()
rentry.pos_lstms[0] = blstm_backward.output()
concat_layer = [dynet.dropout(concatenate(entry.pos_lstms), 0.33) for entry in conll_sentence]
outputFFlayer = self.ffSeqPredictor.predict_sequence(concat_layer)
posIDs = [self.pos.get(entry.pos) for entry in conll_sentence]
for pred, gold in zip(outputFFlayer, posIDs):
posErrs.append(self.pick_neg_log(pred, gold))
# Add predicted pos tags
for entry, poses in zip(conll_sentence, outputFFlayer):
entry.vec = concatenate([entry.vec, dynet.dropout(self.plookup[np.argmax(poses.value())], 0.33)])
entry.lstms = [entry.vec, entry.vec]
#Parsing losses
if self.blstmFlag:
lstm_forward = self.builders[0].initial_state()
lstm_backward = self.builders[1].initial_state()
for entry, rentry in zip(conll_sentence, reversed(conll_sentence)):
lstm_forward = lstm_forward.add_input(entry.vec)
lstm_backward = lstm_backward.add_input(rentry.vec)
entry.lstms[1] = lstm_forward.output()
rentry.lstms[0] = lstm_backward.output()
if self.bibiFlag:
for entry in conll_sentence:
entry.vec = concatenate(entry.lstms)
blstm_forward = self.bbuilders[0].initial_state()
blstm_backward = self.bbuilders[1].initial_state()
for entry, rentry in zip(conll_sentence, reversed(conll_sentence)):
blstm_forward = blstm_forward.add_input(entry.vec)
blstm_backward = blstm_backward.add_input(rentry.vec)
entry.lstms[1] = blstm_forward.output()
rentry.lstms[0] = blstm_backward.output()
scores, exprs = self.__evaluate(conll_sentence)
gold = [entry.parent_id for entry in conll_sentence]
heads = decoder.parse_proj(scores, gold if self.costaugFlag else None)
if self.labelsFlag:
concat_layer = [dynet.dropout(self.__getRelVector(conll_sentence, head, modifier + 1), 0.33) for
modifier, head in enumerate(gold[1:])]
outputFFlayer = self.ffRelPredictor.predict_sequence(concat_layer)
relIDs = [self.rels[conll_sentence[modifier + 1].relation] for modifier, _ in enumerate(gold[1:])]
for pred, goldid in zip(outputFFlayer, relIDs):
lerrs.append(self.pick_neg_log(pred, goldid))
e = sum([1 for h, g in zip(heads[1:], gold[1:]) if h != g])
eerrors += e
if e > 0:
loss = [(exprs[h][i] - exprs[g][i]) for i, (h, g) in enumerate(zip(heads, gold)) if h != g] # * (1.0/float(e))
eloss += (e)
mloss += (e)
errs.extend(loss)
etotal += len(conll_sentence)
if iSentence % 1 == 0:
if len(errs) > 0 or len(lerrs) > 0 or len(posErrs) > 0:
eerrs = (esum(errs + lerrs + posErrs))
eerrs.scalar_value()
eerrs.backward()
self.trainer.update()
errs = []
lerrs = []
posErrs = []
renew_cg()
print "Loss: %.4f" % (mloss / iSentence)