-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlowess_tmp.py
72 lines (58 loc) · 2.36 KB
/
lowess_tmp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
This module implements the Lowess function for nonparametric regression.
Functions:
lowess Fit a smooth nonparametric regression curve to a scatterplot.
For more information, see
William S. Cleveland: "Robust locally weighted regression and smoothing
scatterplots", Journal of the American Statistical Association, December 1979,
volume 74, number 368, pp. 829-836.
William S. Cleveland and Susan J. Devlin: "Locally weighted regression: An
approach to regression analysis by local fitting", Journal of the American
Statistical Association, September 1988, volume 83, number 403, pp. 596-610.
"""
from math import ceil
import numpy as np
from scipy import linalg
def lowess(x, y, f=2./3., iter=3):
"""lowess(x, y, f=2./3., iter=3) -> yest
Lowess smoother: Robust locally weighted regression.
The lowess function fits a nonparametric regression curve to a scatterplot.
The arrays x and y contain an equal number of elements; each pair
(x[i], y[i]) defines a data point in the scatterplot. The function returns
the estimated (smooth) values of y.
The smoothing span is given by f. A larger value for f will result in a
smoother curve. The number of robustifying iterations is given by iter. The
function will run faster with a smaller number of iterations."""
n = len(x)
r = int(ceil(f*n))
h = [np.sort(np.abs(x - x[i]))[r] for i in range(n)]
w = np.clip(np.abs((x[:,None] - x[None,:]) / h), 0.0, 1.0)
w = (1 - w**3)**3
yest = np.zeros(n)
delta = np.ones(n)
for iteration in range(iter):
for i in range(n):
weights = delta * w[:,i]
b = np.array([np.sum(weights*y), np.sum(weights*y*x)])
A = np.array([[np.sum(weights), np.sum(weights*x)],
[np.sum(weights*x), np.sum(weights*x*x)]])
beta = linalg.solve(A, b)
yest[i] = beta[0] + beta[1]*x[i]
residuals = y - yest
s = np.median(np.abs(residuals))
delta = np.clip(residuals / (6.0 * s), -1, 1)
delta = (1 - delta**2)**2
return yest
if __name__ == '__main__':
import math
n = 100
x = np.linspace(0, 2 * math.pi, n)
y = np.sin(x) + 0.3*np.random.randn(n)
f = 0.25
yest = lowess(x, y, f=f, iter=3)
import pylab as pl
pl.clf()
pl.plot(x, y, label='y noisy')
pl.plot(x, yest, label='y pred')
pl.legend()
pl.show()