-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestUV.m
111 lines (95 loc) · 3.87 KB
/
testUV.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
%%% Solution to | u_t + v_x=0
% |
% |v_t + 1/eps^2 u_x=-1/eps^2(v-u)
% |
% |u(x,0)= x \in [-L,L], t>0
% |v(x,0)=
% | + Periodic Boundary Conditions
%Analytical solutions: |u(x,t)=exp(-try)*sin(x-t)
% |v(x,t)=exp(-t)*(sin(x-t)-cos(x-t))
%We choose T=1, epsilon=1e-6, and discretize space derivatives with second order finite differences
clear all
close all
L=6;
m = 15000; %space steps
x = linspace(0,L,m)';
T = 1; %final time
dx = x(3)-x(2);
%u0, v0 the ones of the paper
% u0=sin(x);
% v0=sin(x)-cos(x);
delta=.5;
%u0 = sin(2*pi*x).*exp(-x.^2/(2*delta)); %initial datum
% v0=zeros(m,1);
%u0=cos(pi*x); %Neumann boundary condition
u0 = sin(4*pi*(x-3)).*exp(-4*(x-3).^2/(2*delta)); %WORKS
% u0 = x.^2.*(x-1).*(x-6).^2/400; %WORKS
%u0=ones(m,1);
v0=zeros(m,1);
fprintf('Case 1: 1e-6 \n')
fprintf('Case 2: 0.1 \n' )
fprintf('Case 3: 0.5 \n' )
fprintf('Case 4: 1 \n' )
fprintf('Case 5: variable \n' )
n=input('Enter a case for epsilon: ');
pos = 1;
switch n
case 1
epsilon=1e-6.*ones(m,1);
case 2
epsilon =0.1*ones(m,1);
case 3
epsilon =0.5*ones(m,1);
case 4
epsilon =1*ones(m,1);
case 5
epsilon = (x<=3)+0.1*(x>3);
pos = find(diff(epsilon));
end
dt=dx/100; %CFL condition
n = floor(T/dt)+1;
t = 0;
i = 1;
%% Periodic Boundary Conditions
figure('units','normalized','outerposition',[0 0 1 1]) %run immediately full screen
u=u0;
v=v0;
while t+dt<T %main loop
%% Funziona con epsilon costante, dt=dx^2/400 e m = 201
if(pos==1) %Epsilon is constant in this case
%New v
vold=v;
v(1:end-1) = epsilon(1:end-1).^2./(epsilon(1:end-1).^2+dt).*v(1:end-1)-...
dt./(epsilon(1:end-1).^2+dt).*(([u(2:end-1);u(1)]-[u(end-1);u(1:end-2)])/(2*dx)-((x(1:end-1).^2-6*x(1:end-1))).*u(1:end-1));
%New u
u(1:end-1) = u(1:end-1) - dt*(epsilon(1:end-1).^2./(epsilon(1:end-1).^2+dt).*([vold(2:end-1);vold(1)]-[vold(end-1);vold(1:end-2)])/(2*dx) -...
dt./(epsilon(1:end-1).^2+dt).*([u(2:end-1);u(1)]-2*u(1:end-1)+[u(end-1);u(1:end-2)])/dx^2 +...
dt./(epsilon(1:end-1).^2+dt).*(((x(1:end-1).^2-6*x(1:end-1)).*([u(2:end-1);u(1)]-[u(end-1);u(1:end-2)])/(2*dx))));
v(end) = v(1);
u(end) = u(1);
else %Here the epsilon is not constant
%New v
vold=v;
v(1:pos) = epsilon(1:pos).^2./(epsilon(1:pos).^2+dt).*v(1:pos)-...
dt./(epsilon(1:pos).^2+dt).*(([u(2:pos);u(pos+1)]-[u(end-1);u(1:pos-1)])/(2*dx)-(x(1:pos).^2-6*x(1:pos)).*u(1:pos));
u(1:pos) = u(1:pos) - dt*(epsilon(1:pos).^2./(epsilon(1:pos).^2+dt).*([vold(2:pos);vold(pos+1)]-[vold(end-1);vold(1:pos-1)])/(2*dx) -...
dt./(epsilon(1:pos).^2+dt).*([u(2:pos);u(pos+1)]-2*u(1:pos)+[u(end-1);u(1:pos-1)])/dx^2 +...
dt./(epsilon(1:pos).^2+dt).*((x(1:pos).^2 -6*x(1:pos)).*([u(2:pos);u(pos+1)]-[u(end-1);u(1:pos-1)])/(2*dx)));
v(pos+1:end-1) = epsilon(pos+1:end-1).^2./(epsilon(pos+1:end-1).^2+dt).*v(pos+1:end-1)-...
dt./(epsilon(pos+1:end-1).^2+dt).*((u(pos+2:end)-u(pos:end-2))/(2*dx)-(x(pos+1:end-1).^2-6*x(pos+1:end-1)).*u(pos+1:end-1));
u(pos+1:end-1) = u(pos+1:end-1) - dt*(epsilon(pos+1:end-1).^2./(epsilon(pos+1:end-1).^2+dt).*(vold(pos+2:end)-vold(pos:end-2))/(2*dx) -...
dt./(epsilon(pos+1:end-1).^2+dt).*(u(pos+2:end)-2*u(pos+1:end-1)+u(pos:end-2))/dx^2 +...
dt./(epsilon(pos+1:end-1).^2+dt).*(((x(pos+1:end-1).^2-6*x(pos+1:end-1)).*(u(pos+2:end)-u(pos:end-2))/(2*dx))));
v(end) = v(1);
u(end) = u(1);
end
i = i + 1;
t = t + dt;
end
plot(x,u,'b',x,v,'r')
axis([1 3 -60 60])
legend('u','v');
title('Zoom of solutions at time T=1');
xlabel('x');
ylabel('u(x,T),v(x,T)');
grid on