-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathETHead.m
648 lines (604 loc) · 30.7 KB
/
ETHead.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
% This class is part of Titta, a toolbox providing convenient access to
% eye tracking functionality using Tobii eye trackers
%
% Titta can be found at https://github.com/dcnieho/Titta. Check there for
% the latest version.
% When using Titta or this class, please cite the following paper:
%
% Niehorster, D.C., Andersson, R. & Nystrom, M., (2020). Titta: A toolbox
% for creating Psychtoolbox and Psychopy experiments with Tobii eye
% trackers. Behavior Research Methods.
% doi: https://doi.org/10.3758/s13428-020-01358-8
%
% To run demo, simply call ETHead() with no input arguments.
classdef ETHead < handle
properties
% setup head position visualization
distGain = 1.8;
distGainGP = 1;
eyeSzFac = .25;
eyeMarginFac = .25;
pupilSzFac = .50;
pupilRefDiam = 5; % mm
pupilSzGain = 1.5;
eyeOpennessMax = 10; % mm, will grow if larger value is observed to accomodate it
eyeOpennessScaleMax = 0.9; % 1 would be a normal circle, this is major axis of ellipse
yawFac = 1.25; % exaggerate yaw head depth rotation a bit, looks more like the eye images and simply makes it more visible
pitchFac = 1;
refSz;
rectWH;
headCircleFillClr = [255 255 0 .3*255];
headCircleEdgeClr = [255 255 0];
headCircleEdgeWidth = 5;
crossEye = 0; % 0: none, 1: replace left eye with cross, 2: replace right eye with cross
showEyes = true;
showEyeLids = true;
showPupils = true;
showYaw = true;
drawGrid = false;
crossClr = [255 0 0];
eyeClr = 255;
eyeClrPosMissing = [255 166 166];
eyeBorderClr = 0;
eyeBorderWidth = 1;
eyeLidClr = [210 210 0];
pupilClr = 0;
numGridLines = 5;
gridType = 3; % 1: horizontal lines, 2: vertical lines, 3: both
gridLineColor = [255 255 0 .3*255];
gridLineWidth = .03;
referencePos;
allPosOff = [0 0];
end
properties (SetAccess=private)
wpnt;
eyeDist = 6.2;
nEyeDistMeasures = 0;
avgX
avgY
avgDist
Rori = [1 0; 0 1];
yaw = 0;
pitch = 0;
eyeDistGuidePos = 0.1375; % kinda arbitrary value to use when eyeDistGuidePos has not been measured yet
RoriGP = [1 0; 0 1];
yawGP = 0;
dZ = 0;
dZGP = 0;
headPos
drawYaw = 0;
end
properties (Access=private, Hidden=true)
qFloatColorRange
trackBoxHalfWidth
trackBoxHalfHeight
qHaveLeft
qHaveLeftPos
qHaveRight
qHaveRightPos
qHaveEyeOpenness = false;
lPup
rPup
lEyeOpenness
rEyeOpenness
headSz
circVerts = [];
eyeLidVerts = {};
gridVerts = {};
end
methods
function this = ETHead(wpnt,trackBoxHalfWidth,trackBoxHalfHeight)
if nargin==0
% run demo
ETHead.showDemo();
else
this.wpnt = wpnt;
this.qFloatColorRange = Screen('ColorRange',this.wpnt)==1;
this.trackBoxHalfWidth = trackBoxHalfWidth;
this.trackBoxHalfHeight = trackBoxHalfHeight;
this.circVerts = genEllipse(200);
end
end
function update(this,...
leftOriginValid, leftGazeOriginUCS, leftGuidePos, leftPupilValid, leftPupilDiameter, leftEyeOpennessValid, leftEyeOpennessDiameter,...
rightOriginValid,rightGazeOriginUCS,rightGuidePos, rightPupilValid, rightPupilDiameter, rightEyeOpennessValid, rightEyeOpennessDiameter, pitch)
% pitch cannot be computed from these inputs, but can be
% provided if known from another source. Pitch is in degrees,
% and applied after yaw. Roll is applied last, by simply
% rotating projection plane
if nargin>=16
this.pitch = pitch/180*pi;
else
this.pitch = 0;
end
% deal with gaze origin
[lEye,rEye] = deal(nan(3,1));
if isempty(leftGuidePos)
[leftGuidePos,rightGuidePos] = deal(nan(3,1));
end
this.qHaveLeftPos = (~isempty( leftOriginValid) && ~~leftOriginValid) || ~any(isnan( leftGuidePos));
if ~isempty( leftOriginValid) && ~~leftOriginValid
lEye = leftGazeOriginUCS;
end
this.qHaveRightPos = (~isempty(rightOriginValid) && ~~rightOriginValid) || ~any(isnan(rightGuidePos));
if ~isempty(rightOriginValid) && ~~rightOriginValid
rEye = rightGazeOriginUCS;
end
% deal with pupil signals and eye openness signals, which we
% may have despite missing gaze origin
this.qHaveLeft = this.qHaveLeftPos || (~isempty( leftPupilValid) && leftPupilValid) || (~isempty( leftEyeOpennessValid) && leftEyeOpennessValid);
this.qHaveRight = this.qHaveRightPos || (~isempty(rightPupilValid) && rightPupilValid) || (~isempty(rightEyeOpennessValid) && rightEyeOpennessValid);
if leftPupilValid
this.lPup = leftPupilDiameter;
end
if rightPupilValid
this.rPup = rightPupilDiameter;
end
if leftEyeOpennessValid
this.lEyeOpenness = leftEyeOpennessDiameter;
this.qHaveEyeOpenness = true;
end
if rightEyeOpennessValid
this.rEyeOpenness = rightEyeOpennessDiameter;
this.qHaveEyeOpenness = true;
end
% get average eye distance. use distance from one eye if only one eye
% available
dists = [lEye(3) rEye(3)]./10;
Xs = [lEye(1) rEye(1)]./10;
Ys = [lEye(2) rEye(2)]./10;
if all([this.qHaveLeftPos this.qHaveRightPos])
% get orientation of eyes in X-Y plane
dX = diff(Xs);
dY = diff(Ys);
this.dZ = diff(dists);
this.yaw = atan2(this.dZ,dX);
roll = atan2( dY,dX);
this.Rori = [cos(roll) sin(roll); -sin(roll) cos(roll)];
% update eye distance measure (maintain running
% average). NB: ignoring dY leads to a more stable
% visualization, so we're doing that.
this.nEyeDistMeasures = this.nEyeDistMeasures+1;
this.eyeDist = (this.eyeDist*(this.nEyeDistMeasures-1)+hypot(dX,this.dZ))/this.nEyeDistMeasures;
end
% if we have guide positions, also keep track of eye distance
% in there. This is not perfect as distance between eyes scales
% with physical distance to eye tracker in this coordinate
% system (and later possibly in more complex ways), but for
% head position visualization it is better to do this than to
% not do it at all.
if ~isnan(leftGuidePos(1)) && ~isnan(rightGuidePos(1))
dXGP = diff([leftGuidePos(1) rightGuidePos(1)]);
dYGP = diff([leftGuidePos(2) rightGuidePos(2)]);
this.dZGP = diff([leftGuidePos(3) rightGuidePos(3)]);
this.eyeDistGuidePos = this.eyeDistGuidePos/2 + hypot(dXGP,hypot(dYGP,this.dZGP))/2; % take equally weighted average of previous and current provides stable visualization
this.yawGP = atan2(this.dZGP,dXGP);
rollGP = atan2( dYGP,dXGP);
this.RoriGP = [cos(rollGP) sin(rollGP); -sin(rollGP) cos(rollGP)];
end
% if we have only one eye, make fake second eye
% position so drawn head position doesn't jump so much.
off = this.Rori*[this.eyeDist; 0];
if ~this.qHaveLeftPos
Xs(1) = Xs(2) -off(1);
Ys(1) = Ys(2) +off(2);
dists(1)= dists(2)-this.dZ;
elseif ~this.qHaveRightPos
Xs(2) = Xs(1) +off(1);
Ys(2) = Ys(1) -off(2);
dists(2)= dists(1)+this.dZ;
end
% same for guidepos-based head position (see discussion above
% in code block where this.eyeDistGuidePos is determined).
offGP = this.RoriGP*[this.eyeDistGuidePos; 0];
if any(isnan(leftGuidePos))
leftGuidePos(1) = rightGuidePos(1) -offGP(1);
leftGuidePos(2) = rightGuidePos(2) +offGP(2);
leftGuidePos(3) = rightGuidePos(3) -this.dZGP;
elseif any(isnan(rightGuidePos))
rightGuidePos(1) = leftGuidePos(1) +offGP(1);
rightGuidePos(2) = leftGuidePos(2) -offGP(2);
rightGuidePos(3) = leftGuidePos(3) +this.dZGP;
end
% determine head position in user coordinate system
this.avgX = mean(Xs(~isnan(Xs))); % on purpose isnan() instead of qHave, as we may have just repaired a missing Xs and Ys above
this.avgY = mean(Ys(~isnan(Xs)));
this.avgDist = mean(dists(~isnan(Xs)));
% determine visualized head position based on this
% if reference position given, use it
if ~any(isnan(this.referencePos))
if isempty(this.trackBoxHalfWidth)
% We don't know size of the trackBox. Use trackbox
% dimension of Spectrum. Although probably not
% appropriate for the connected eye tracker, it doesn't
% matter: we just need to scale horizontal and vertical
% offset from reference position for illustration
% purposes. As long as offsets are clearly seen, we're
% ok.
avgXtb = (this.avgX-this.referencePos(1))/14 /2+.5;
avgYtb = (this.avgY-this.referencePos(2))/11.25/2+.5;
else
avgXtb = (this.avgX-this.referencePos(1))/this.trackBoxHalfWidth /2+.5;
avgYtb = (this.avgY-this.referencePos(2))/this.trackBoxHalfHeight/2+.5;
end
avgYtb = 1-avgYtb; % 1-Y to flip direction (positive UCS is upward, should be downward for drawing on screen)
fac = this.avgDist/this.referencePos(3);
dGain = this.distGain;
if this.showYaw
this.drawYaw = this.yaw;
end
else
% if we don't have a reference position, that means we only
% have the position guide to go on
% this is not perfectly jump-proof when one eye is lost. So
% be it
avgXtb = 1-mynanmean([leftGuidePos(1) rightGuidePos(1)]);
avgYtb = mynanmean([leftGuidePos(2) rightGuidePos(2)]);
avgZtb = mynanmean([leftGuidePos(3) rightGuidePos(3)]);
fac = avgZtb+.5; % make 1 the ideal position, less than 1 too close, more too far
dGain = this.distGainGP;
if this.showYaw
this.drawYaw = this.yawGP;
end
end
% scale up size of oval. define size/rect at standard distance, have a
% gain for how much to scale as distance changes
if ~isnan(this.avgDist)
pos = [avgXtb avgYtb];
% determine size of head, based on distance from reference distance
this.headSz = this.refSz - this.refSz*(fac-1)*dGain;
% move
this.headPos = pos.*this.rectWH + this.allPosOff;
else
this.headPos = [];
end
% if show eyelids, pregen them
if this.showEyeLids
for p=1:2 % left and right eye
if p==1
eyeOpenness = this.lEyeOpenness;
else
eyeOpenness = this.rEyeOpenness;
end
% determine how open the eye is
if isempty(eyeOpenness) || isnan(eyeOpenness)
openFac = 1;
else
% adjust range if needed for this subject
this.eyeOpennessMax = max(this.eyeOpennessMax,eyeOpenness);
openFac = eyeOpenness/this.eyeOpennessMax;
end
lidVerts = getEye(100,openFac);
edgeVerts= genEllipse(100,1,1,[0 pi]);
this.eyeLidVerts{p,1} = [lidVerts edgeVerts(:,2:end-1)];
this.eyeLidVerts{p,2} = [this.eyeLidVerts{p,1}(1,:); -this.eyeLidVerts{p,1}(2,:)];
end
end
% if gridlines, pregen them
if this.drawGrid
this.gridVerts = cell(1,this.numGridLines*sum(logical(bitand(this.gridType,[1 2]))));
idx = 0;
if bitand(this.gridType,1) % horizontal lines
vPos = linspace(-1,1,this.numGridLines+2); vPos = vPos(2:end-1);
for p=1:this.numGridLines
v = vPos(p)+[-1 1]*this.gridLineWidth/2;
h = sqrt(1-v.^2);
this.gridVerts{idx+p} = [h([1 2 2 1]).*[1 1 -1 -1]; v([1 2 2 1])];
end
idx = idx+this.numGridLines;
end
if bitand(this.gridType,2) % vertical lines
hPos = linspace(-1,1,this.numGridLines+2); hPos = hPos(2:end-1);
for p=1:this.numGridLines
h = hPos(p)+[-1 1]*this.gridLineWidth/2;
v = sqrt(1-h.^2);
this.gridVerts{idx+p} = [h([1 2 2 1]); v([1 2 2 1]).*[1 1 -1 -1]];
end
end
end
end
function draw(this)
if ~isempty(this.headPos)
oris = [this.yaw this.pitch].*[this.yawFac this.pitchFac];
% draw grid on head
if this.drawGrid && ~isempty(this.gridVerts)
for p=1:length(this.gridVerts)
drawOrientedPoly(this.wpnt,this.gridVerts{p},1,oris,this.Rori,this.headSz,this.headPos,this.getColorForWindow(this.gridLineColor),[0 0 0 0],1);
end
end
% draw head
drawOrientedPoly(this.wpnt,this.circVerts,1,oris,this.Rori,this.headSz,this.headPos,this.getColorForWindow(this.headCircleFillClr),this.getColorForWindow(this.headCircleEdgeClr),this.headCircleEdgeWidth);
if this.showEyes
for e=1:2
eyeOff = [this.eyeMarginFac*2;0]; % *2 because all sizes are radii
if e==1
% left eye
pup = this.lPup;
eyeOff = -eyeOff;
havePos = this.qHaveLeftPos;
else
% right eye
pup = this.rPup;
havePos = this.qHaveRightPos;
end
if e==this.crossEye
% draw cross indicating not being calibrated
cross = [cosd(45) sind(45); -sind(45) cosd(45)]*[1 1 4 4 1 1 -1 -1 -4 -4 -1 -1; 4 1 1 -1 -1 -4 -4 -1 -1 1 1 4]/4*this.eyeSzFac + eyeOff;
drawOrientedPoly(this.wpnt,cross,0,oris,this.Rori,this.headSz,this.headPos,this.getColorForWindow(this.crossClr));
elseif (e==1 && this.qHaveLeft) || (e==2 && this.qHaveRight)
% draw eye
eye = bsxfun(@plus,this.eyeSzFac*this.circVerts,eyeOff);
if havePos
eClr = this.eyeClr;
else
eClr = this.eyeClrPosMissing;
end
drawOrientedPoly(this.wpnt,eye,1,oris,this.Rori,this.headSz,this.headPos,this.getColorForWindow(eClr),this.getColorForWindow(this.eyeBorderClr),this.eyeBorderWidth);
% if wanted, draw pupil
if this.showPupils && ~isempty(pup)
pupilSz = (1+(pup/this.pupilRefDiam-1)*this.pupilSzGain)*this.pupilSzFac*this.eyeSzFac;
pup = bsxfun(@plus,pupilSz*this.circVerts,eyeOff);
drawOrientedPoly(this.wpnt,pup,1,oris,this.Rori,this.headSz,this.headPos,this.getColorForWindow(this.pupilClr));
end
% if wanted, draw eye lids
if this.showEyeLids
for l=1:2
lid = bsxfun(@plus,this.eyeSzFac*this.eyeLidVerts{e,l},eyeOff);
drawOrientedPoly(this.wpnt,lid,0,oris,this.Rori,this.headSz,this.headPos,this.getColorForWindow(this.eyeLidClr),this.getColorForWindow(this.eyeBorderClr),this.eyeBorderWidth);
end
end
else
% draw line indicating missing eye (or closed
% if tracker doesn't provide eye openness)
line = bsxfun(@plus,[-1 1 1 -1; -1/5 -1/5 1/5 1/5]*this.eyeSzFac,eyeOff);
drawOrientedPoly(this.wpnt,line,1,oris,this.Rori,this.headSz,this.headPos,this.getColorForWindow(this.eyeClr));
end
end
end
end
end
end
methods (Static)
function showDemo()
try
scr = max(Screen('Screens'));
if false
% make screen partially transparent on OSX and windows vista or
% higher, so we can debug.
PsychDebugWindowConfiguration;
end
Screen('Preference', 'SyncTestSettings', 0.002); % the systems are a little noisy, give the test a little more leeway
[wpnt,winRect] = PsychImaging('OpenWindow', scr, 127, [], [], [], [], 4);
hz=Screen('NominalFrameRate', wpnt);
Priority(1);
Screen('BlendFunction', wpnt, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
Screen('Preference', 'TextAlphaBlending', 1);
Screen('Preference', 'TextAntiAliasing', 2);
% This preference setting selects the high quality text renderer on
% each operating system: It is not really needed, as the high quality
% renderer is the default on all operating systems, so this is more of
% a "better safe than sorry" setting.
Screen('Preference', 'TextRenderer', 1);
Screen('TextSize',wpnt, 40);
KbName('UnifyKeyNames'); % for correct operation of the setup/calibration interface, calling this is required
% make ETHead
head = ETHead(wpnt,[],[]);
head.rectWH = winRect(3:4);
head.refSz = .1*winRect(3);
head.referencePos = [0 0 65]; % cm, note that position inputs to head.update are in mm, not cm
head.allPosOff = [-winRect(3)*.2 0];
head2 = ETHead(wpnt,[],[]);
head2.rectWH = winRect(3:4);
head2.refSz = .1*winRect(3);
head2.referencePos = [0 0 65]; % cm, note that position inputs to head.update are in mm, not cm
head2.drawGrid = true;
head2.allPosOff = [winRect(3)*.2 0];
% overall params
cps = 2/3;
dphi = cps*2*pi;
dt = 1/hz;
eyeDist = 30; % half eye dist
% starting screen
DrawFormattedText(wpnt,'This demo will show the below head animated in various ways. Press any key to continue to the next animation.','center',winRect(4)*.15,0,50);
head.update(true, [-eyeDist 0 650].', [], true, 5, false, nan, true, [eyeDist 0 650].', [], true, 5, false, nan);
head.draw();
head2.update(true, [-eyeDist 0 650].', [], true, 5, false, nan, true, [eyeDist 0 650].', [], true, 5, false, nan);
head2.draw();
Screen('Flip',wpnt);
KbStrokeWait;
% back and forth in depth, blinking eye
range = [500 800];
t = 0;
while true
DrawFormattedText(wpnt,'Head moving back and forth in depth, eyes blinking.','center',winRect(4)*.15,0,50);
normOff = sin(t*dphi);
d = range(1) + diff(range)*(.5+normOff/2);
eye1Openness = max(0,(cos(t*dphi )*.75+.25)*11);
eye2Openness = max(0,(cos(t*dphi+pi)*.75+.25)*11);
head.update(true, [-eyeDist 0 d].', [], true, 5, true, eye1Openness, true, [eyeDist 0 d].', [], true, 5, true, eye2Openness);
head.draw();
head2.update(true, [-eyeDist 0 d].', [], true, 5, true, eye1Openness, true, [eyeDist 0 d].', [], true, 5, true, eye2Openness);
head2.draw();
Screen('Flip',wpnt);
if KbCheck()
break;
end
t = t+dt;
end
KbWait([],1);
% sideways around rotation point
Rdist = 250;
range = 15/180*pi;
t = 0;
eyesPos = [[-1 1]*eyeDist;Rdist Rdist];
while true
DrawFormattedText(wpnt,'Head swinging left-to-right.','center',winRect(4)*.15,0,50);
ori = range*sin(t*dphi);
Rmat= [cos(ori) sin(ori); -sin(ori) cos(ori)];
eyes= Rmat*eyesPos;
eyes(2,:) = eyes(2,:)-Rdist;
head.update(true, [eyes(:,1); 650], [], true, 5, true, 11, true, [eyes(:,2); 650], [], true, 5, true, 11);
head.draw();
head2.update(true, [eyes(:,1); 650], [], true, 5, true, 11, true, [eyes(:,2); 650], [], true, 5, true, 11);
head2.draw();
Screen('Flip',wpnt);
if KbCheck()
break;
end
t = t+dt;
end
KbWait([],1);
% head yaw
Rdist = 60;
range = 35/180*pi;
t = 0;
eyesPos = [[-1 1]*eyeDist;Rdist Rdist];
while true
DrawFormattedText(wpnt,'Head yaw.','center',winRect(4)*.15,0,50);
ori = range*sin(t*dphi);
Rmat= [cos(ori) sin(ori); -sin(ori) cos(ori)];
eyes= Rmat*eyesPos;
eyes(2,:) = eyes(2,:)-Rdist;
head.update(true, [eyes(1,1) 0 650-eyes(2,1)].', [], true, 5, true, 11, true, [eyes(1,2) 0 650-eyes(2,2)].', [], true, 5, true, 11);
head.draw();
head2.update(true, [eyes(1,1) 0 650-eyes(2,1)].', [], true, 5, true, 11, true, [eyes(1,2) 0 650-eyes(2,2)].', [], true, 5, true, 11);
head2.draw();
Screen('Flip',wpnt);
if KbCheck()
break;
end
t = t+dt;
end
KbWait([],1);
% head pitch
Rdist = 60;
range = 35/180*pi;
t = 0;
while true
DrawFormattedText(wpnt,'Head pitch.','center',winRect(4)*.15,0,50);
ori = range*sin(t*dphi);
Yoff= Rdist*sin(ori);
Zoff= Rdist*cos(ori)-Rdist;
head.update(true, [-eyeDist Yoff 650+Zoff].', [], true, 5, true, 11, true, [eyeDist Yoff 650+Zoff].', [], true, 5, true, 11, -ori*180/pi);
head.draw();
head2.update(true, [-eyeDist Yoff 650+Zoff].', [], true, 5, true, 11, true, [eyeDist Yoff 650+Zoff].', [], true, 5, true, 11, -ori*180/pi);
head2.draw();
Screen('Flip',wpnt);
if KbCheck()
break;
end
t = t+dt;
end
KbWait([],1);
% pupils
range = 2.5;
t = 0;
while true
DrawFormattedText(wpnt,'Crazy pupils.','center',winRect(4)*.15,0,50);
offset = range*sin(t*dphi);
head.update(true, [-eyeDist 0 650].', [], true, 5+offset, true, 11, true, [eyeDist 0 650].', [], true, 5-offset, true, 11);
head.draw();
head2.update(true, [-eyeDist 0 650].', [], true, 5+offset, true, 11, true, [eyeDist 0 650].', [], true, 5-offset, true, 11);
head2.draw();
Screen('Flip',wpnt);
if KbCheck()
break;
end
t = t+dt;
end
KbWait([],1);
% all together now
Rdist1 = 250;
range1 = 15/180*pi;
Rdist2 = 60;
range2 = 35/180*pi;
rangep = 1.5;
t = 0;
eyesPos1 = [[-1 1]*eyeDist;Rdist1 Rdist1];
eyesPos2 = [[-1 1]*eyeDist;Rdist2 Rdist2];
mode = 0;
while true
DrawFormattedText(wpnt,'All together now.','center',winRect(4)*.15,0,50);
normOff = sin(t*dphi);
Rmat1= [cos(range1*normOff) sin(range1*normOff); -sin(range1*normOff) cos(range1*normOff)];
eyes1= Rmat1*eyesPos1;
eyes1(2,:) = eyes1(2,:)-Rdist1;
Rmat2= [cos(range2*normOff) sin(range2*normOff); -sin(range2*normOff) cos(range2*normOff)];
if mode
Rmat2 = Rmat2';
end
eyes2= Rmat2*eyesPos2;
eyes2(2,:) = eyes2(2,:)-Rdist2;
eye1Openness = max(0,(cos(t*dphi )*.75+.25)*11);
eye2Openness = max(0,(cos(t*dphi+pi)*.75+.25)*11);
head.update(true, [(eyes1(1,1)+eyes2(1,1))/2 eyes1(2,1) 650-eyes2(2,1)].', [], true, 5+rangep*normOff, true, eye1Openness, true, [(eyes1(1,2)+eyes2(1,2))/2 eyes1(2,2) 650-eyes2(2,2)].', [], true, 5-rangep*normOff, true, eye2Openness);
head.draw();
head2.update(true, [(eyes1(1,1)+eyes2(1,1))/2 eyes1(2,1) 650-eyes2(2,1)].', [], true, 5+rangep*normOff, true, eye1Openness, true, [(eyes1(1,2)+eyes2(1,2))/2 eyes1(2,2) 650-eyes2(2,2)].', [], true, 5-rangep*normOff, true, eye2Openness);
head2.draw();
Screen('Flip',wpnt);
if KbCheck()
mode=mode+1;
head.crossEye = 1;
head2.crossEye = 2;
KbWait([],1);
if mode==2
break;
end
end
t = t+dt;
end
catch me
sca
rethrow(me)
end
sca
end
end
methods (Access=private, Hidden=true)
function clr = getColorForWindow(this,clr)
if this.qFloatColorRange
clr = double(clr)/255;
end
end
end
end
% helpers
function verts = genEllipse(nStep,a,b,range)
if nargin<2
a = 1;
end
if nargin<3
b = a;
end
if nargin<4
range = [0 2*pi];
end
alpha = linspace(range(1),range(2),nStep);
verts = [a*cos(alpha); b*sin(alpha)];
end
function verts = getEye(nStep,openFac)
if openFac==0
verts = [-1 1; 0 0];
else
% use formula from K. Mundilova and T. Wills (2018). Folding the Vesica
% Piscis, Proceedings of Bridges 2018: Mathematics, Art, Music,
% Architecture, Education, Culture, p. 535–538 for folding a Vesica
% Piscis (equation 2 for f(bar)_{u,h}). The Vesica Piscis itself is a
% lot like an ellipse, but sharper eye corners and more consistent
% eyelid thickness. The folding means that the aperture slightly
% non-linearly decreases with decreasing eye openness (faster at the
% end), which is perhaps not exactly correct, but looks much better. I
% scale (deform) the Vesica Piscis such that maximum amplitude is 1 so
% that eyelids are not way too thick.
u = .5;
h = openFac;
s = linspace(-acos(-u),acos(-u),nStep);
maxAmpn = (1+u)/(2+u); % (1+u)*h/(1+u+h) with h fixed to 1
unitFac = 1/sin(s(end)); % factor to scale everything by so that height of Vesica Piscis is 2 ([-1, 1])
maxAmp = maxAmpn*unitFac; % factor to scale y by so that maximum amplitude (at h==1) is 1
t_uh = h./(cos(s)+u+h)*unitFac;
x = sin(s).*t_uh; % NB: x and y are swapped from Mundilova's article, as i need the form to be rotated 90 degrees
y = (cos(s)+u).*t_uh;
verts = [x; y/maxAmp*.92]; % *.92 as always want to see some eyelid, also when eye fully open
end
end