-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimal_monadic.hs
92 lines (73 loc) · 2.48 KB
/
minimal_monadic.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
{- This file implements a simple monadic interpreter.
-}
import Control.Applicative
import Control.Monad
import Data.Function
import Data.List
import qualified Control.Monad.Fail as Fail
type Var = String
infixl 6 :+:, :-:
infixl 7 :*:, :/:
data Exp
= C Int --- Constant
| V Var --- Variable
| Exp :+: Exp --- Addition
| Exp :-: Exp --- Subtraction
| Exp :*: Exp --- Multiplication
| Exp :/: Exp --- Division
infix 1 :=
data Stmt
= Var := Exp --- Assignment
| While Exp Stmt --- Loop
| Seq [Stmt] --- Sequence
type Prog = Stmt
type Val = Int
type Store = [(Var, Val)]
newtype Interp a = Interp { runInterp :: Store -> Either String (a, Store) }
instance Functor Interp where
fmap = liftM -- imported from Control.Monad
instance Applicative Interp where
pure = return
(<*>) = ap -- imported from Control.Monad
instance Monad Interp where
return x = Interp $ \r -> Right (x, r)
i >>= k = Interp $ \r -> case runInterp i r of
Left msg -> Left msg
Right (x, r') -> runInterp (k x) r'
instance Fail.MonadFail Interp where
fail msg = Interp $ \_ -> Left msg
rd :: Var -> Interp Val
rd x = Interp $ \r -> case lookup x r of
Nothing -> Left ("unbound variable `" ++ x ++ "'")
Just v -> Right (v, r)
wr :: Var -> Val -> Interp ()
wr x v = Interp $ \r -> Right ((), (x, v) : r)
eval :: Exp -> Interp Val
eval (C n) = do return n
eval (V x) = do rd x
eval (e1 :+: e2) = do v1 <- eval e1
v2 <- eval e2
return (v1 + v2)
eval (e1 :-: e2) = do v1 <- eval e1
v2 <- eval e2
return (v1 - v2)
eval (e1 :*: e2) = do v1 <- eval e1
v2 <- eval e2
return (v1 * v2)
eval (e1 :/: e2) = do v1 <- eval e1
v2 <- eval e2
if v2 == 0
then fail "division by zero"
else return (v1 `div` v2)
exec :: Stmt -> Interp ()
exec (x := e) = do v <- eval e
wr x v
exec (While e s) = do v <- eval e
when (v /= 0) (exec (Seq [s, While e s]))
exec (Seq []) = do return ()
exec (Seq (s : ss)) = do exec s
exec (Seq ss)
run :: Prog -> Store -> Either String Store
run p r = case runInterp (exec p) r of
Left msg -> Left msg
Right (_, r') -> Right (nubBy ((==) `on` fst) r')