-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_variance.py
55 lines (48 loc) · 2.88 KB
/
test_variance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 01 20:54:02 2015
@author: Shamir
"""
# Calculate the number of missing values in the array
def CalculateValidData(currentFile, currentRow): # currentFile = readFile, currentRow = m
number_of_nan = len(currentFile.values[currentRow][pandas.isnull(currentFile.values[currentRow])])
length_of_array = len(currentFile.values[currentRow])
valid_datapoints = length_of_array - number_of_nan
return valid_datapoints
for i in range(len(os.listdir(sourcePath))): # we have 6 files corresponding to 6 gestures
gesture = os.listdir(sourcePath)[i] # Jab, Uppercut, Throw, Jets, Block, Asgard
copy = False
variance_array = []
for k in range(len(os.listdir(sourcePath + gesture))):
sensor = os.listdir(sourcePath + gesture)[k] # Sensor15, Sensor16, Sensor17, Sensor18, Sensor19
sensorFolder = os.listdir(sourcePath + gesture + backslash + sensor) # 1.csv ... 4.csv
sensorFolder = natsorted(sensorFolder)
for l in range(len(sensorFolder)):
csvfile = sourcePath + gesture + backslash + sensor + backslash + sensorFolder[l] # full filepath
readFile = pandas.read_csv(csvfile, header = None)
readFile.values[1:] = readFile.values[1:].astype(float)
number_of_rows = len(readFile.values)
variance = ['Var_' + sensor[6:] + '_' + readFile.values[0,0]]
print variance, csvfile[-7:]
variance = np.asarray(variance)
if copy == True:
for m in range(1, number_of_rows): # |||len(readFile.values)|||
## need to add code to check if number_of_rows matches
valid_data = CalculateValidData(readFile, m) # exclude missing values
Var = np.var(readFile.values[m, 0:valid_data])
variance = np.vstack((variance, Var))
variance_array = np.hstack((variance_array, variance))
else:
for m in range(1, number_of_rows):
valid_data = CalculateValidData(readFile, m)
Var = np.var(readFile.values[m, 0:valid_data])
variance = np.vstack((variance, Var))
#covariance_array = np.zeros([len(readFile1.values),1])
variance_array = variance.copy()
copy = True
# Create complete file structure/dataframe
if i == 0:
fullFile1 = DataFrame(variance_array)
else:
variance_array = DataFrame(variance_array)
fullFile1 = pandas.concat([fullFile1, variance_array], join = 'inner')