-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcalc_dfm_is.py
277 lines (209 loc) · 9.79 KB
/
calc_dfm_is.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# coding: utf-8
# In[25]:
import numpy as np
import xray
# from xray import ufuncs
import os
import math
import gc
import pandas as pd
import datetime as dt
import sys
import operator
sys.stdout.flush()
# IMPORT DATA FROM INTEGRATED SCENARIOS ARCHIVE
# In[26]:
################################# INPUTS #############################
args = sys.argv[1:]
model = args[0]
scenario = args[1]
#model = "CNRM-CM5"
#scenario="historical"
######################################################################
direc = '/raid/gergel/%s' % "tmin"
tmin_file = "%s_%s_%s.nc" % (model,scenario,"tasmin")
tmin_f = xray.open_dataset(os.path.join(direc,tmin_file),chunks={'time': 1400}) ## load tmin
direc = '/raid/gergel/%s' % "tmax"
tmax_file = "%s_%s_%s.nc" % (model,scenario,"tasmax")
tmax_f = xray.open_dataset(os.path.join(direc,tmax_file),chunks={'time': 1400}) ## load tmax
direc = '/raid/gergel/%s' % "rh"
q_file = "%s_%s_%s.nc" % (model,scenario,"huss")
q_f = xray.open_dataset(os.path.join(direc,q_file),chunks={'time': 1400}) ## load specific humidity
direc = '/raid/gergel/pptdur'
pr_file = "%s_%s.nc" % (model,scenario)
pptdur = xray.open_dataset(os.path.join(direc,pr_file),chunks={'time': 1400}) ## load precip
## adjust lat/lon dimensions since the index names are different
tmin_lons_new = tmin_f['lon'].values[tmin_f['lon'].values > 180] - 360
tmin_f['lon'] = tmin_lons_new
tmax_f['lon'] = tmin_lons_new
q_f['lon'] = tmin_lons_new
print("finished chunking data")
## cut out conus east of 103 for each variable
swe_mask_file = '/raid9/gergel/agg_snowpack/goodleap/SWE/histmeanmask.nc' ## 1s are swe, 0s are no swe
swe_mask = xray.open_dataset(swe_mask_file)
## rename dimensions
swe_mask.rename({"Latitude": "lat", "Longitude": "lon", "Time": "time"}, inplace=True)
swe_mask = swe_mask.squeeze()
## Dataset join
swe_mask_align,tmax = xray.align(swe_mask,tmax_f,join='inner',copy=False)
swe_mask_align,tmin = xray.align(swe_mask,tmin_f,join='inner',copy=False)
swe_mask_align,q = xray.align(swe_mask,q_f,join='inner',copy=False)
print("FEEL THE BERN!")
## get julian days
julians = pd.DatetimeIndex(np.asarray(tmin.time)).dayofyear
## delete full arrays of each variable for conus
del tmax_f,tmin_f,q_f,swe_mask,swe_mask_align
gc.collect()
# 100-hr and 1000-hr DFM FUNCTION
# In[27]:
def constrain_dataset(da,bool_operator,constrain_value,fill_value):
''' constrains masked values of dataset to be above/below given value,fills with given value and accounts for possible existing nans '''
import operator
import xray
da = da.fillna(-9999)
da = da.where((bool_operator(da,constrain_value)) & (da == -9999)).fillna(fill_value)
da = da.where(da != -9999).fillna(np.nan)
return(da)
def calc_fm100_fm1000(x,pptdur,maxrh,minrh,maxt,mint,lat,tmois,bv,julians,ymc100):
'''this subroutine computes the average boundary conditions for the past
24 hour and 100-hr-tl fuel moisture. The boundary conditions are weighted averages
of the EQMCs calculated from the temp and RH values. Philab is used to calculate
daylength which is the basis of the weighting function.'''
from calc_dfm_is import constrain_dataset
bndry1 = 0
bndry = 0
ambvp = 0
fr100 = 0.3156
sys.stdout.flush()
## John's calcDaylight function
if julians > 365:
julians = 365
phi = lat * 0.01745 ## converts latitude to radians
decl = .41008*np.sin((julians-82)*0.01745)
daylit = 24.0*(1-np.arccos(np.tan(phi)*np.tan(decl))/3.14159)
daylit = daylit.real
minrh = minrh.values
minrh[minrh <= 10] = 0.03229 + (0.281073 * minrh[minrh <= 10]) - (0.000578 * minrh[minrh <= 10] * maxt.values[minrh <= 10])
minrh[(minrh > 10) & (minrh <= 50)] = 2.22749 + (0.160107 * minrh[(minrh > 10) & (minrh <= 50)]) - (0.014784 * maxt.values[(minrh > 10) & (minrh <= 50)])
minrh[minrh > 50] = 21.0606 + (0.005565 * (minrh[minrh > 50]**2)) - (0.00035 * minrh[minrh > 50] * maxt.values[minrh > 50]) - (0.483199 * minrh[minrh > 50])
emc1 = minrh
print("calculated emc1")
maxrh = maxrh.values
maxrh[maxrh <= 10] = 0.03229 + (0.281073 * maxrh[maxrh <= 10]) - (0.000578 * maxrh[maxrh <= 10] * mint.values[maxrh <= 10])
maxrh[(maxrh > 10) & (maxrh <= 50)] = 2.22749 + (0.160107 * maxrh[(maxrh > 10) & (maxrh <= 50)]) - (0.014784 * mint.values[(maxrh > 10) & (maxrh <= 50)])
maxrh[maxrh > 50] = 21.0606 + (0.005565 * (maxrh[maxrh > 50]**2)) - (0.00035 * maxrh[maxrh > 50] * mint.values[maxrh > 50]) - (0.483199 * maxrh[maxrh > 50])
emc2 = maxrh
print("calculated emc2")
emc = (daylit.reshape(maxrh.shape) * emc1 + (24.0 - daylit.reshape(maxrh.shape)) * emc2) / 24.0
print("calculated emcs")
## qc precip duration
pptdur = constrain_dataset(pptdur,operator.le,8,8)
pptdur = constrain_dataset(pptdur,operator.gt,0,0)
bndry1 = ((24.0 - pptdur) * emc + (0.5 * pptdur + 41) * pptdur) / 24.0
fm100 = ((bndry1 - ymc100) * fr100) + ymc100
## calculate 1000-hr fuel moisture daily using average of boundary conditions for past seven days. starting value set by climate type.
fr1 = 0.3068
bvave = np.zeros(x)
## accumulate a 6-day total
bv[0,:,:] = bv[1,:,:]
bv[1,:,:] = bv[2,:,:]
bv[2,:,:] = bv[3,:,:]
bv[3,:,:] = bv[4,:,:]
bv[4,:,:] = bv[5,:,:]
bv[5,:,:] = bv[6,:,:]
bvave = bv.sum(axis=1)
bndry = ((24 - pptdur) * emc + (2.7 * pptdur + 76) * pptdur) / 24.0
bv[6,:,:] = bndry
print("calculated bvs")
## add today's boundary from subfm100, divide by 7 days
bvave = (bvave + bndry) / 7.0
## calculate today's 1000 hr fuel moisture
fm1000 = tmois[0,:,:] + (bvave - tmois[0,:,:])*fr1
## move each days 1000 hr down one, drop the oldest
# tmois[0:6,:,:] = tmois[1:7,:,:]
tmois[0,:,:] = tmois[1,:,:]
tmois[1,:,:] = tmois[2,:,:]
tmois[2,:,:] = tmois[3,:,:]
tmois[3,:,:] = tmois[4,:,:]
tmois[4,:,:] = tmois[5,:,:]
tmois[5,:,:] = tmois[6,:,:]
tmois[6,:,:] = fm1000
print("finished tmois")
return(tmois,fm1000,fm100,bv)
def kelvin_to_fahrenheit(T):
''' converts T in Kelvin to Fahrenheit'''
F = ((9.0/5.0) * (T - 273.15)) + 32.0
return(F)
def estimate_p(h):
p = 101325 * (1 - ((2.25577 * 10**-5) * h))**5.25588 ## Pascals
return(p)
def estimate__e_s(T):
''' estimates saturation vapor pressure'''
from xray import ufuncs
T0 = 273.15 ## Kelvin, reference temperature
e_s = 611 * ufuncs.exp((17.67 * (T - T0)) / (T - 29.65) )
return(e_s)
def estimate_relative_humidity(q,e_s,p):
'''estimates relative humidity using hypsometric equation for pressure, virtual temperature and avg temperature'''
import numpy as np
w = q ## approximating the mixing ratio as the specific humidity
w_s = 0.622 * (e_s / p)
RH = 100.0 * (w / w_s)
return (RH)
######################################################################################################
x = len(q.lat)*len(q.lon) ## number of grid cells
## get gridcell elevations
h = np.zeros((len(q.lat),len(q.lon)))
## get list of lats
lats = np.ndarray(shape=x,dtype='float')
count = 0
for j in xrange(len(q.lat)):
for k in xrange(len(q.lon)):
lats[count] = q.lat[j]
count += 1
## get pressure
p = estimate_p(h)
tmois=np.zeros(shape=(7,len(q.lat),len(q.lon)))
bv=np.zeros(shape=(7,len(q.lat),len(q.lon)))
ymc=np.zeros(shape=(len(q.lat),len(q.lon)))
ndays = len(julians)
## INITIALIZE DFM ARRAYS TO FILL IN OVER ITERATION
fm1000_rh = np.ndarray(shape=(ndays,len(q.lat),len(q.lon)),dtype='float')
fm100_rh = np.ndarray(shape=(ndays,len(q.lat),len(q.lon)),dtype='float')
print("initialized arrays for dfm")
# ITERATE AND CALCULATE 100 HR AND 1000 HR DFM
for day in xrange(ndays):
print("now calculating day %f" %day)
t_avg = (tmax['air_temp_max'].isel(time=day) + tmin['air_temp_min'].isel(time=day)) / 2.0
e_s = estimate__e_s(t_avg) ## saturation vapor pressure
del t_avg
gc.collect()
satvpx = estimate__e_s(tmax.isel(time=day))
satvpn = estimate__e_s(tmin.isel(time=day))
RH = estimate_relative_humidity(q.isel(time=day),e_s,p)
ambvp = (RH * e_s) / 100.0
rhmax = 100.0 * (ambvp['specific_humidity'] / satvpn['air_temp_min'])
rhmin = 100.0 * (ambvp['specific_humidity'] / satvpx['air_temp_max'])
## constrain RH to be 100 % or less
rhmin = constrain_dataset(rhmin,operator.le,100,100)
rhmax = constrain_dataset(rhmax,operator.le,100,100)
print("entering iteration loop")
tmois,fm1000_rh[day,:,:],fm100_rh[day,:,:],bv = calc_fm100_fm1000(x,pptdur.isel(time=day),rhmax,rhmin,kelvin_to_fahrenheit(tmax['air_temp_max'].isel(time=day)),kelvin_to_fahrenheit(tmin['air_temp_min'].isel(time=day)),lats,tmois,bv,julians[day],ymc)
ymc=fm100_rh[day,:,:]
print(day)
print("finished iteration loop")
# CONSTRUCT DATASET
ds = xray.Dataset()
lon_da = xray.DataArray(tmax.lon,dims=('longitude', ), name='longitude', attrs={'long_name': 'longitude coordinate'})
lat_da = xray.DataArray(tmax.lat,dims=('latitude', ), name='latitude', attrs={'long_name': 'latitude coordinate'})
ds['fm100'] = xray.DataArray(fm100_rh, dims=('latitude','longitude'), name='fm100', coords={'latitude': lat_da, 'longitude': lon_da},attrs={'long_name': '100 hr dead fuel moisture'})
ds['fm1000'] = xray.DataArray(fm1000_rh, dims=('latitude','longitude'), name='fm1000', coords={'latitude': lat_da, 'longitude': lon_da},attrs={'long_name': '1000 hr dead fuel moisture'})
ds['time'] = xray.DataArray(tmax.time,dims=('latitude','longitude'), name='time', coords={'latitude': lat_da, 'longitude': lon_da},attrs={'long_name': 'time'})
## WRITE TO NETCDF
direc = '/raid/gergel/dfm' % (model,scenario)
if not os.path.exists(direc):
os.makedirs(direc) ## if directory doesn't exist, create it
## save to netcdf
filename = '%s_%s.nc' %(model,scenario)
ds.to_netcdf(os.path.join(direc,filename))
print("saved netcdf to %s" % os.path.join(direc,filename))