-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
151 lines (124 loc) · 4.72 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from datasets import load_dataset
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
EarlyStoppingCallback,
Seq2SeqTrainingArguments,
Trainer,
)
from scoring import _rouge_calculation as rouge
import torch
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def get_var_or_default(var, default):
return os.environ[var] if var in os.environ else default
base_model = get_var_or_default("BASE_MODEL", "t5-base")
model_name = get_var_or_default("MODEL_NAME", base_model)
tokenizer_name = get_var_or_default("TOKENIZER_NAME", model_name)
dataset_hf_user = get_var_or_default("DATASET_HF_USER", "din0s")
dataset_name = get_var_or_default("DATASET_NAME", "asqa")
OPEN_BOOK = get_var_or_default("OPEN_BOOK", "false").lower() == "true"
print(f"Finetuning {model_name} on {dataset_name} ({'open' if OPEN_BOOK else 'closed'}-book variant)")
dataset = load_dataset(f"{dataset_hf_user}/{dataset_name}")
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
hf_base_name = f"{base_model}-pt" if "/" in model_name else model_name
ft_model_name = f"{hf_base_name}-{dataset_name}-{'ob' if OPEN_BOOK else 'cb'}"
train_batch_size = 8 if OPEN_BOOK else 16
eval_batch_size = 8
def get_context(example):
if dataset_name == "asqa":
context = [p["context"] for p in example["qa_pairs"] if p["context"] != "No context provided"]
elif dataset_name == "msmarco-nlgen":
context = [p["passage_text"] for p in example["passages"] if p["is_selected"]]
else:
raise Exception(f"Unknown dataset {dataset_name}")
return context
def has_context(example):
return len(get_context(example)) > 0
def tokenize_function(example):
if dataset_name == "asqa":
question = example["ambiguous_question"]
answer = example["annotations"][0]["long_answer"]
elif dataset_name == "msmarco-nlgen":
question = example["query"]
answer = example["answers"][0]
else:
raise Exception(f"Unknown dataset {dataset_name}")
question = f"question: {question}"
if OPEN_BOOK:
if base_model == "bart":
context = "<P> " + " <P> ".join(get_context(example))
else:
context = " | ".join(get_context(example))
question = f"{question} context: {context}"
question_tokenized = tokenizer(question, truncation=True, max_length=512)
example['input_ids'] = question_tokenized['input_ids']
ans_tokenized = tokenizer(text_target=answer, truncation=True, max_length=512)
example["labels"] = ans_tokenized['input_ids']
return example
def compute_metrics(pred):
labels_ids = pred.label_ids
preds_ids = pred.predictions
# replace -100 back to <pad>
labels_ids[labels_ids == -100] = tokenizer.pad_token_id
preds_ids[preds_ids == -100] = tokenizer.pad_token_id
labels = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
preds = tokenizer.batch_decode(preds_ids, skip_special_tokens=True)
return rouge(hypotheses=preds, references1=labels)
def get_argmax(logits, _):
return torch.cat([distr.argmax(dim=-1) for distr in logits], dim=1)
if OPEN_BOOK:
dataset = dataset.filter(has_context)
tokenized_datasets = dataset.map(tokenize_function)
custom_args = {}
if dataset_name == "asqa":
custom_args = {
"evaluation_strategy": "epoch",
"save_strategy": "epoch",
"num_train_epochs": 20,
"learning_rate": 1e-5,
}
elif dataset_name == "msmarco-nlgen":
custom_args = {
"evaluation_strategy": "steps",
"save_strategy": "steps",
"num_train_epochs": 1,
"eval_steps": 2500,
"save_steps": 2500,
"learning_rate": 1e-4,
}
if base_model == "bart":
custom_args["learning_rate"] = 5e-6
training_args = Seq2SeqTrainingArguments(
output_dir=ft_model_name,
predict_with_generate=True,
generation_max_length=100,
generation_num_beams=5,
weight_decay=0.01,
save_total_limit=1,
report_to="wandb",
remove_unused_columns=True,
group_by_length=True,
per_device_train_batch_size=train_batch_size,
per_device_eval_batch_size=eval_batch_size,
metric_for_best_model="loss",
load_best_model_at_end = True,
push_to_hub=True,
fp16=True,
**custom_args,
)
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["dev"],
data_collator=DataCollatorForSeq2Seq(tokenizer, model),
callbacks=[EarlyStoppingCallback(early_stopping_patience=5, early_stopping_threshold=1e-3)],
preprocess_logits_for_metrics=get_argmax,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.push_to_hub()