-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmrcal-convert-lensmodel
executable file
·867 lines (715 loc) · 38.4 KB
/
mrcal-convert-lensmodel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
#!/usr/bin/env python3
# Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
# Government sponsorship acknowledged. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
r'''Converts a camera model from one lens model to another
SYNOPSIS
$ mrcal-convert-lensmodel
--viz LENSMODEL_OPENCV4 left.cameramodel
... lots of output as the solve runs ...
RMS error of the solution: 3.40256580058 pixels.
Wrote 'left-LENSMODEL_OPENCV4.cameramodel'
... a plot pops up showing the differences ...
Given one camera model, this tool computes another camera model that represents
the same camera, but utilizes a different lens model. While lens models all
exist to solve the same problem, the different representations don't map to one
another perfectly, and this tool finds the best-fitting parameters of the target
lens model. Two different methods are implemented:
1. If the given cameramodel file contains optimization_inputs, then we have all
the data that was used to compute this model in the first place, and we can
re-run the original optimization, using the new lens model. This is the
default behavior, and is the preferred choice. However it can only work with
models that were computed by mrcal originally. We re-run the full original
solve, even it contained multiple cameras, unless --monocular is given. With
that option, we re-solve only the subset of the images observed by the one
requested camera
2. We can sample a grid of points on the imager, unproject them to observation
vectors in the camera coordinate system, and then fit a new camera model that
reprojects these vectors as closely to the original pixel coordinates as
possible. This can be applied to models that didn't come from mrcal. Select
this mode by passing --sampled.
Since camera models (lens parameters AND geometry) are computed off real pixel
observations, the confidence of the projections varies greatly across the imager
and across observation distances. The first method uses the original data, so it
implicitly respects these uncertainties: uncertain areas in the original model
will be uncertain in the new model as well. The second method, however, doesn't
have this information: it doesn't know which parts of the imager and space are
reliable, so the results suffer.
As always, the intrinsics have some baked-in geometry information. Both methods
optimize intrinsics AND extrinsics, and output cameramodels with updated
versions of both. If --sampled: we can request that only the intrinsics be
optimized by passing --intrinsics-only.
Also, if --sampled and not --intrinsics-only: we fit the extrinsics off 3D
points, not just observation directions. The distance from the camera to the
points is set by --distance. This can take a comma-separated list of distances
to use. It's STRONGLY recommended to ask for two different distances:
- A "near" distance: where we expect the intrinsics to have the most accuracy.
At the range of the chessboards, usually
- A "far" distance: at "infinity". A few km is good usually.
The reason for this is that --sampled solves at a single distance aren't
sufficiently constrained. If we ask for a single far distance: "--distance 1000"
for instance, we can easily get an extrinsics shift of 100m. This is aphysical:
changing the intrinsics could shift the camera origin by a few mm, but not 100m.
Conceptually we want to perform a rotation-only extrinsics solve, but this isn't
yet implemented. Passing both a near and far distance appears to constrain the
extrinsics well in practice. The computed extrinsics transform is printed on the
console, with a warning if an aphysical shift was computed. Do pay attention to
the console output.
Sampled solves are sometimes sensitive to the optimization seed. To control for
this, pass --num-trials to evaluate the solve multiple times from different
random seeds, and to pick the best one. These solves are usually quick, so
there's no harm in passing something like "--num-trials 10".
We need to consider that the model we're trying to fit may not fit the original
model in all parts of the imager. Usually this is a factor when converting
wide-angle cameramodels to use a leaner model: a decent fit will be possible at
the center, with more and more divergence as we move towards the edges. We
handle this with the --where and --radius options to allow the user to select
the area of the imager that is used for the fit: observations outside the
selected area are thrown out. This region is centered on the point given by
--where (or at the center of the imager, if --where is omitted). The radius of
this region is given by --radius. If '--radius 0' then we use ALL the data. A
radius<0 can be used to set the size of the no-data margin at the corners; in
this case I'll use
r = sqrt(width^2 + height^2)/2. - abs(radius)
There's a balance to strike here. A larger radius means that we'll try to fit as
well as we can in a larger area. This might mean that we won't fit well
anywhere, but we won't do terribly anywhere, either. A smaller area means that
we give up on the outer regions entirely (resulting in very poor fits there),
but we'll be able to fit much better in the areas that remain. Generally
empirical testing is required to find a good compromise: pass --viz to see the
resulting differences. Note that --radius and --where applies only if we're
optimizing sampled reprojections; if we're using the original optimization
inputs, the options are illegal.
The output is written to a file on disk, with the same filename as the input
model, but with the new lensmodel added to the filename.
'''
import sys
import argparse
import re
import os
def parse_args():
parser = \
argparse.ArgumentParser(description = __doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--sampled',
action='store_true',
help='''Instead of solving the original calibration problem using the new lens model,
use sampled imager points. This produces biased results,
but can be used even if the original optimization_inputs
aren't available''')
parser.add_argument('--gridn',
type=int,
default = (30,20),
nargs = 2,
help='''Used if --sampled. How densely we should sample the imager. By default we use
a 30x20 grid''')
parser.add_argument('--distance',
type=str,
help='''Required if --sampled and not --intrinsics-only.
A sampled solve fits the intrinsics and extrinsics to
match up reprojections of a grid of observed pixels. The
points being projected are set a particular distance
(set by this argument) from the camera. Set this to the
distance that is expected to be most confident for the
given cameramodel. Points at infinity aren't supported
yet: specify a high distance instead. We can fit
multiple distances at the same time by passing them here
in a comma-separated, whitespace-less list. If multiple
distances are given, we fit the model using ALL the
distances, but --viz displays the difference for the
FIRST distance given. See the description above. Without
--sampled, this is used for the visualization only''')
parser.add_argument('--intrinsics-only',
action='store_true',
help='''Used if --sampled. By default I optimize the
intrinsics and extrinsics to find the closest
reprojection. If for whatever reason we know that the
camera coordinate system was already right, or we need
to keep the original extrinsics, pass --intrinsics-only.
The resulting extrinsics will be the same, but the fit
will not be as good. In many cases, optimizing
extrinsics is required to get a usable fit, so
--intrinsics-only may not be an option if accurate
results are required.''')
parser.add_argument('--where',
type=float,
nargs=2,
help='''Used with or without --sampled. I use a subset
of the imager to compute the fit. The active region is a
circle centered on this point. If omitted, we will focus
on the center of the imager''')
parser.add_argument('--radius',
type=float,
help='''Used with or without --sampled. I use a subset
of the imager to compute the fit. The active region is a
circle with a radius given by this parameter. If radius
== 0, I'll use the whole imager for the fit. If radius <
0, this parameter specifies the width of the region at
the corners that I should ignore: I will use
sqrt(width^2 + height^2)/2. - abs(radius). This is valid
ONLY if we're focusing at the center of the imager. By
default I ignore a large-ish chunk area at the corners.''')
parser.add_argument('--monocular',
action='store_true',
help='''Used if not --sampled. By default we re-solve
the full calibration problem that was used to originally
obtain the input model, even if it contained multiple
cameras. If --monocular, we re-solve only a subset of
the original problem, using ONLY the observations made
by THIS camera''')
parser.add_argument('--viz',
action='store_true',
help='''Visualize the differences between the input and
output models. If we have --distance, the FIRST given
distance is used to display the fit error''')
parser.add_argument('--cbmax',
type=float,
default=4,
help='''Maximum range of the colorbar''')
parser.add_argument('--title',
type=str,
default = None,
help='''Used if --viz. Title string for the diff plot.
Overrides the default title. Exclusive with
--extratitle''')
parser.add_argument('--extratitle',
type=str,
default = None,
help='''Used if --viz. Additional string for the plot to
append to the default title. Exclusive with --title''')
parser.add_argument('--hardcopy',
type=str,
help='''Used if --viz. Write the diff output to disk,
instead of making an interactive plot''')
parser.add_argument('--terminal',
type=str,
help=r'''Used if --viz. gnuplotlib terminal. The default
is good almost always, so most people don't need this
option''')
parser.add_argument('--set',
type=str,
action='append',
help='''Used if --viz. Extra 'set' directives to
gnuplotlib. Can be given multiple times''')
parser.add_argument('--unset',
type=str,
action='append',
help='''Used if --viz. Extra 'unset' directives to
gnuplotlib. Can be given multiple times''')
parser.add_argument('--force', '-f',
action='store_true',
default=False,
help='''By default existing models on disk are not
overwritten. Pass --force to overwrite them without
complaint''')
parser.add_argument('--outdir',
type=lambda d: d if os.path.isdir(d) else \
parser.error(f"--outdir requires an existing directory as the arg, but got '{d}'"),
help='''Directory to write the output into. If omitted,
we use the directory of the input model''')
parser.add_argument('--num-trials',
type = int,
default = 1,
help='''If given, run the solve more than once. Useful
in case random initialization produces noticeably
different results. By default we run just one trial,
which is enough most of the time''')
parser.add_argument('to',
type=str,
help='The target lens model')
parser.add_argument('model',
default='-',
nargs='?',
type=str,
help='''Input camera model. If omitted or "-", we read
standard input and write to standard output''')
args = parser.parse_args()
if args.title is not None and \
args.extratitle is not None:
print("Error: --title and --extratitle are exclusive", file=sys.stderr)
sys.exit(1)
if args.distance is not None:
import math
try:
args.distance = [float(d) for d in args.distance.split(',')]
except:
print("Error: distances must be given a comma-separated list of floats in --distance",
file=sys.stderr)
sys.exit(1)
if any(not math.isfinite(x) or x <= 0 for x in args.distance):
print("All values in --distances must be finite and > 0",
file=sys.stderr)
sys.exit(1)
return args
args = parse_args()
# arg-parsing is done before the imports so that --help works without building
# stuff, so that I can generate the manpages and README
import numpy as np
import numpysane as nps
import time
import copy
import mrcal
lensmodel_to = args.to
try:
meta = mrcal.lensmodel_metadata_and_config(lensmodel_to)
except Exception as e:
print(f"Invalid lens model '{lensmodel_to}': couldn't get the metadata: {e}",
file=sys.stderr)
sys.exit(1)
if not meta['has_gradients']:
print(f"lens model {lensmodel_to} is not supported at this time: its gradients aren't implemented",
file=sys.stderr)
sys.exit(1)
try:
Ndistortions = mrcal.lensmodel_num_params(lensmodel_to) - 4
except:
print(f"Unknown lens model: '{lensmodel_to}'", file=sys.stderr)
sys.exit(1)
try:
m = mrcal.cameramodel(args.model)
except Exception as e:
print(f"Couldn't load camera model '{args.model}': {e}", file=sys.stderr)
sys.exit(1)
if args.model == '-':
# Input read from stdin. Write output to stdout
file_output = sys.stdout
else:
if args.outdir is None:
filename_base,extension = os.path.splitext(args.model)
file_output = f"{filename_base}-{lensmodel_to}{extension}"
else:
f,extension = os.path.splitext(args.model)
directory,filename_base = os.path.split(f)
file_output = f"{args.outdir}/{filename_base}-{lensmodel_to}{extension}"
if os.path.exists(file_output) and not args.force:
print(f"ERROR: '{file_output}' already exists. Not overwriting this file. Pass -f to overwrite",
file=sys.stderr)
sys.exit(1)
lensmodel_from = m.intrinsics()[0]
if lensmodel_from == lensmodel_to:
print(f"Input and output have the same lens model {lensmodel_from}. Nothing to do", file=sys.stderr)
print("RMS error of the solution: 0 pixels.", file=sys.stderr)
sys.exit(0)
if not args.sampled:
if args.intrinsics_only:
print("--intrinsics-only requires --sampled",
file=sys.stderr)
sys.exit(1)
if not (mrcal.lensmodel_metadata_and_config(lensmodel_from)['has_core'] and \
mrcal.lensmodel_metadata_and_config(lensmodel_to )['has_core']):
print("Without --sampled, the TO and FROM models must support contain an intrinsics core. It COULD work otherwise, but somebody needs to implement it",
file=sys.stderr)
sys.exit(1)
optimization_inputs = m.optimization_inputs()
if optimization_inputs is None:
print("optimization_inputs not available in this model, so only sampled fits are possible. Pass --sampled",
file=sys.stderr)
sys.exit(1)
icam_intrinsics = m.icam_intrinsics()
if args.monocular:
if optimization_inputs['indices_point_camintrinsics_camextrinsics'] is not None and \
optimization_inputs['indices_point_camintrinsics_camextrinsics'].size > 0:
print("--monocular can be used ONLY to re-optimize vanilla calibration problems. This one has points",
file=sys.stderr)
sys.exit(1)
intrinsics = \
optimization_inputs['intrinsics']
imagersizes = \
optimization_inputs['imagersizes']
extrinsics_rt_fromref = \
optimization_inputs['extrinsics_rt_fromref']
frames_rt_toref = \
optimization_inputs['frames_rt_toref']
indices_frame_camintrinsics_camextrinsics = \
optimization_inputs['indices_frame_camintrinsics_camextrinsics']
observations_board = \
optimization_inputs['observations_board']
if 'imagepaths' in optimization_inputs:
imagepaths = \
optimization_inputs['imagepaths']
mask_observations = indices_frame_camintrinsics_camextrinsics[:,1] == icam_intrinsics
indices_frame_camintrinsics_camextrinsics = \
indices_frame_camintrinsics_camextrinsics[mask_observations]
observations_board = \
observations_board[mask_observations]
if 'imagepaths' in optimization_inputs:
imagepaths = \
imagepaths[mask_observations]
### Now I must cull the extrinsics and frames to only use these
### observations
# intrinsics
indices_frame_camintrinsics_camextrinsics[:,1] = 0
intrinsics = intrinsics [(icam_intrinsics,), :]
imagersizes = imagersizes[(icam_intrinsics,), :]
# extrinsics
icam_extrinsics = \
indices_frame_camintrinsics_camextrinsics[0,2]
if not np.all(indices_frame_camintrinsics_camextrinsics[:,2] == icam_extrinsics):
print("Error: --monocular can work ONLY if the calibration-time cameras are stationary. Here the requested camera was moving",
file=sys.stderr)
sys.exit(1)
indices_frame_camintrinsics_camextrinsics[:,2] = -1
if icam_extrinsics >= 0:
# I'm moving the reference to lie at this one new camera. Transform
# everything
rt_cam_reforig = extrinsics_rt_fromref[icam_extrinsics]
rt_refnew_reforig = rt_cam_reforig
frames_rt_toref = mrcal.compose_rt( rt_refnew_reforig, frames_rt_toref )
extrinsics_rt_fromref = np.empty((0,6), dtype=float)
# frames
frames_rt_toref = frames_rt_toref[indices_frame_camintrinsics_camextrinsics[:,0], :]
Nframes = len(indices_frame_camintrinsics_camextrinsics)
indices_frame_camintrinsics_camextrinsics[:,0] = np.arange(Nframes)
# store everythin back into the inputs
optimization_inputs['intrinsics'] = \
intrinsics
optimization_inputs['imagersizes'] = \
imagersizes
optimization_inputs['extrinsics_rt_fromref'] = \
extrinsics_rt_fromref
optimization_inputs['frames_rt_toref'] = \
frames_rt_toref
optimization_inputs['indices_frame_camintrinsics_camextrinsics'] = \
indices_frame_camintrinsics_camextrinsics
optimization_inputs['observations_board'] = \
observations_board
if 'imagepaths' in optimization_inputs:
optimization_inputs['imagepaths'] = \
imagepaths
icam_intrinsics = 0
optimization_inputs_before = copy.deepcopy(optimization_inputs)
intrinsics_from = optimization_inputs['intrinsics']
intrinsics_from_core = intrinsics_from[..., :4]
Ncameras = len(intrinsics_from)
# Ignore observations in the corners, as requested
if not (args.radius is None or args.radius == 0):
for icam in range(Ncameras):
dims = optimization_inputs['imagersizes'][icam].astype(float)
if args.where is None:
focus_center = (dims - 1) / 2
else:
focus_center = args.where
if args.radius > 0:
r = args.radius
else:
if nps.norm2(focus_center - (dims - 1.) / 2) > 1e-3:
print("A radius <0 is only implemented if we're focusing on the imager center", file=sys.stderr)
sys.exit(1)
r = nps.mag(dims)/2. + args.radius
indices_cam = optimization_inputs['indices_frame_camintrinsics_camextrinsics'][:,1]
observations = optimization_inputs['observations_board']
mask_thiscam = indices_cam == icam
mask_past_radius = nps.norm2(observations[...,:2] - focus_center) > r*r
observations[nps.mv(mask_thiscam, -1, -3) * mask_past_radius, 2] = -1
optimization_inputs['verbose'] = False
optimization_inputs['lensmodel'] = lensmodel_to
optimization_inputs['intrinsics'] = np.zeros((Ncameras,Ndistortions+4), dtype=float)
optimization_inputs['intrinsics'][:,:4] = intrinsics_from_core
# I do this in stages, similar to how mrcal-calibrate-cameras does it. First
# just the frames and extrinsics. Assuming a core-only intrinsics
optimization_inputs['do_optimize_intrinsics_core'] = False
optimization_inputs['do_optimize_intrinsics_distortions']= False
optimization_inputs['do_optimize_calobject_warp'] = False
optimization_inputs['do_apply_outlier_rejection'] = False
optimization_inputs['do_apply_regularization'] = False
stats = mrcal.optimize(**optimization_inputs)
# Then I optimize the core also
optimization_inputs['do_optimize_intrinsics_core'] = True
stats = mrcal.optimize(**optimization_inputs)
# Then the intrinsics too
optimization_inputs['do_optimize_intrinsics_distortions']= True
optimization_inputs['do_apply_outlier_rejection'] = True
optimization_inputs['do_apply_regularization'] = True
if re.match("LENSMODEL_SPLINED_STEREOGRAPHIC_", lensmodel_to):
# splined models have a core, but those variables are largely redundant
# with the spline parameters. So I lock down the core when targeting
# splined models
optimization_inputs['do_optimize_intrinsics_core'] = False
# stolen expand_intrinsics() in mrcal-calibrate-extrinsics. Please consolidate
optimization_inputs['intrinsics'][:,4:] = \
(np.random.random((Ncameras, Ndistortions)) - 0.5)*2. *1e-6
modelmatch = re.search("OPENCV([0-9]+)", lensmodel_to)
if modelmatch:
Nd = int(modelmatch.group(1))
if Nd >= 8:
# Push down the rational components of the seed. I'd like these all to
# sit at 0 ideally. The radial distortion in opencv is x_distorted =
# x*scale where r2 = norm2(xy - xyc) and
#
# scale = (1 + k0 r2 + k1 r4 + k4 r6)/(1 + k5 r2 + k6 r4 + k7 r6)
#
# Note that k2,k3 are tangential (NOT radial) distortion components.
# Note that the r6 factor in the numerator is only present for
# >=LENSMODEL_OPENCV5. Note that the denominator is only present for >=
# LENSMODEL_OPENCV8. The danger with a rational model is that it's
# possible to get into a situation where scale ~ 0/0 ~ 1. This would
# have very poorly behaved derivatives. If all the rational coefficients
# are ~0, then the denominator is always ~1, and this problematic case
# can't happen. I favor that.
optimization_inputs['intrinsics'][:,4:][:,5:8] *= 1e-3
stats = mrcal.optimize(**optimization_inputs)
# And finally I do the calobject_warp too
optimization_inputs['do_optimize_calobject_warp'] = True
stats = mrcal.optimize(**optimization_inputs)
# I pick the inlier set using the post-solve inliers/outliers. The solve
# could add some outliers, but it won't take any away, so the union of the
# before/after inlier sets is just the post-solve set
idx_inliers_after = optimization_inputs['observations_board'][...,2] > 0
calobject_camframe_before = \
mrcal.hypothesis_board_corner_positions(icam_intrinsics,
**optimization_inputs_before,
idx_inliers = idx_inliers_after )[-2]
calobject_camframe_after = \
mrcal.hypothesis_board_corner_positions(icam_intrinsics,
**optimization_inputs,
idx_inliers = idx_inliers_after )[-2]
# This is a procrustes-based transformation. This transform is usable, but
# isn't based on camera observations, and often produces poor diffs if used
# directly. Let mrcal.projection_diff() figure out the implied_Rt10 instead
# of using this
implied_Rt10 = mrcal.align_procrustes_points_Rt01(calobject_camframe_after,
calobject_camframe_before)
# For the purposes of visualization I use what I was given. Or the mean
# observation distance if I was given nothing
if args.distance is None:
distance_for_diff = np.mean(nps.mag(calobject_camframe_after))
else:
distance_for_diff = np.array(args.distance)
print(f"RMS error of the solution: {stats['rms_reproj_error__pixels']} pixels.",
file=sys.stderr)
m_to = mrcal.cameramodel( optimization_inputs = optimization_inputs,
icam_intrinsics = icam_intrinsics )
else:
# Sampled solve. I grid the imager, unproject and fit
intrinsics_from = m.intrinsics()
if args.distance is None:
if args.intrinsics_only:
# We're only looking at the intrinsics, so the distance doesn't
# matter. I pick an arbitrary value
args.distance = [10.]
else:
print("--sampled without --intrinsics-only REQUIRES --distance",
file=sys.stderr)
sys.exit(1)
if args.monocular:
print("--monocular doesn't work with --sampled",
file=sys.stderr)
sys.exit(1)
dims = m.imagersize()
if dims is None:
print("Warning: imager size not available. Using centerpixel*2",
file=sys.stderr)
dims = intrinsics_from[1][2:4] * 2
if args.radius is None:
# By default use 1/4 of the smallest dimension
args.radius = -np.min(m.imagersize()) // 4
print(f"Default radius: {args.radius}. We're ignoring the regions {-args.radius} pixels from each corner",
file=sys.stderr)
if args.where is not None and \
nps.norm2(args.where - (dims - 1.) / 2) > 1e-3:
print("A radius <0 is only implemented if we're focusing on the imager center: use an explicit --radius, or omit --where",
file=sys.stderr)
sys.exit(1)
# Alrighty. Let's actually do the work. I do this:
#
# 1. Sample the imager space with the known model
# 2. Unproject to get the 3d observation vectors
# 3. Solve a new model that fits those vectors to the known observations, but
# using the new model
### I sample the pixels in an NxN grid
Nx,Ny = args.gridn
qx = np.linspace(0, dims[0]-1, Nx)
qy = np.linspace(0, dims[1]-1, Ny)
# q is (Ny*Nx, 2). Each slice of q[:] is an (x,y) pixel coord
q = np.ascontiguousarray( nps.transpose(nps.clump( nps.cat(*np.meshgrid(qx,qy)), n=-2)) )
if args.radius != 0:
# we use a subset of the input data for the fit
if args.where is None:
focus_center = (dims - 1.) / 2.
else:
focus_center = args.where
if args.radius > 0:
r = args.radius
else:
if nps.norm2(focus_center - (dims - 1.) / 2) > 1e-3:
print("A radius <0 is only implemented if we're focusing on the imager center",
file=sys.stderr)
sys.exit(1)
r = nps.mag(dims)/2. + args.radius
grid_off_center = q - focus_center
i = nps.norm2(grid_off_center) < r*r
q = q[i, ...]
# To visualize the sample grid:
# import gnuplotlib as gp
# gp.plot(q[:,0], q[:,1], _with='points pt 7 ps 2', xrange=[0,3904],yrange=[3904,0], wait=1, square=1)
# sys.exit()
intrinsics_from = m.intrinsics()
### I unproject this, with broadcasting
# shape (Ndistances,)
d = np.array(args.distance)
# shape (Ndistances, Ny*Nx, 2)
q = q * np.ones((d.size,1,1))
# shape (Ndistances, Ny*Nx, 3)
p = mrcal.unproject( q, *intrinsics_from, normalize = True ) * \
nps.mv(d, -1, -3)
# shape (Ndistances*Ny*Nx, 2)
q = nps.clump(q, n=2)
# shape (Ndistances*Ny*Nx, 3)
p = nps.clump(p, n=2)
# The list of distances. The meaning is the same as expected by
# mrcal.show_projection_diff(): we visualize the diff of the FIRST distance
distance_for_diff = d
# Ignore any failed unprojections
i_finite = np.isfinite(p[:,0])
p = p[i_finite]
q = q[i_finite]
Npoints = len(q)
weights = np.ones((Npoints,), dtype=float)
### Solve!
### I solve the optimization a number of times with different random seed
### values, taking the best-fitting results. This is required for the richer
### models such as LENSMODEL_OPENCV8
err_rms_best = 1e10
intrinsics_data_best = None
extrinsics_rt_fromref_best = None
for i in range(args.num_trials):
# random seed for the new intrinsics
intrinsics_core = intrinsics_from[1][:4]
distortions = (np.random.rand(Ndistortions) - 0.5) * 1e-3 # random initial seed
intrinsics_to_values = nps.dummy(nps.glue(intrinsics_core, distortions, axis=-1),
axis=-2)
# each point has weight 1.0
observations_points = nps.glue(q, nps.transpose(weights), axis=-1)
observations_points = np.ascontiguousarray(observations_points) # must be contiguous. mrcal.optimize() should really be more lax here
# Which points we're observing. This is dense and kinda silly for this
# application. Each slice is (i_point,i_camera,i_camera-1). Initially O
# do everything in camera-0 coordinates, and I do not move the
# extrinsics
indices_point_camintrinsics_camextrinsics = np.zeros((Npoints,3), dtype=np.int32)
indices_point_camintrinsics_camextrinsics[:,0] = \
np.arange(Npoints, dtype=np.int32)
indices_point_camintrinsics_camextrinsics[:,1] = 0
indices_point_camintrinsics_camextrinsics[:,2] = -1
optimization_inputs = \
dict(intrinsics = intrinsics_to_values,
extrinsics_rt_fromref = None,
frames_rt_toref = None, # no frames. Just points
points = p,
observations_board = None, # no board observations
indices_frame_camintrinsics_camextrinsics = None, # no board observations
observations_point = observations_points,
indices_point_camintrinsics_camextrinsics = indices_point_camintrinsics_camextrinsics,
lensmodel = lensmodel_to,
imagersizes = nps.atleast_dims(dims, -2),
# I'm not optimizing the point positions (frames), so these
# need to be set to be inactive, and to include the ranges I do
# have
point_min_range = np.min(d) * 0.9,
point_max_range = np.max(d) * 1.1,
# I optimize the lens parameters. That's the whole point
do_optimize_intrinsics_core = True,
do_optimize_intrinsics_distortions = True,
do_optimize_extrinsics = False,
# NOT optimizing the observed point positions
do_optimize_frames = False )
if re.match("LENSMODEL_SPLINED_STEREOGRAPHIC_", lensmodel_to):
# splined models have a core, but those variables are largely redundant
# with the spline parameters. So I lock down the core when targetting
# splined models
optimization_inputs['do_optimize_intrinsics_core'] = False
stats = mrcal.optimize(**optimization_inputs,
# No outliers. I have the points that I have
do_apply_outlier_rejection = False,
verbose = False)
if not args.intrinsics_only:
# go again, but refine this solution, allowing us to fit the
# extrinsics too
optimization_inputs['indices_point_camintrinsics_camextrinsics'][:,2] = \
np.zeros ((Npoints,), dtype = np.int32)
optimization_inputs['extrinsics_rt_fromref'] = (np.random.rand(1,6) - 0.5) * 1e-6
optimization_inputs['do_optimize_extrinsics'] = True
stats = mrcal.optimize(**optimization_inputs,
# No outliers. I have the points that I have
do_apply_outlier_rejection = False,
verbose = False)
err_rms = stats['rms_reproj_error__pixels']
print(f"RMS error of this solution: {err_rms} pixels.",
file=sys.stderr)
if err_rms < err_rms_best:
err_rms_best = err_rms
intrinsics_data_best = optimization_inputs['intrinsics'][0,:].copy()
if not args.intrinsics_only:
extrinsics_rt_fromref_best = optimization_inputs['extrinsics_rt_fromref'][0,:].copy()
if intrinsics_data_best is None:
print("No valid intrinsics found!", file=sys.stderr)
sys.exit(1)
if args.num_trials > 1:
print(f"RMS error of the BEST solution: {err_rms_best} pixels.",
file=sys.stderr)
m_to = mrcal.cameramodel( intrinsics = (lensmodel_to, intrinsics_data_best.ravel()),
imagersize = dims )
if args.intrinsics_only:
implied_Rt10 = mrcal.identity_Rt()
else:
implied_Rt10 = mrcal.Rt_from_rt(extrinsics_rt_fromref_best)
if not (args.sampled and args.intrinsics_only):
implied_rt10 = mrcal.rt_from_Rt(implied_Rt10)
print(f"Transformation cam_fitted <-- cam_input: rotation: {nps.mag(implied_rt10[:3])*180./np.pi:.03f} degrees, translation: {np.array2string(implied_rt10[3:], precision=2)} m",
file=sys.stderr)
dist_shift = nps.mag(implied_rt10[3:])
if dist_shift > 0.01:
msg = f"## WARNING: fitted camera moved by {dist_shift:.03f}m. This is probably aphysically high, and something is wrong."
if args.distance is not None and args.sampled:
print(msg + " Pass both a high and a low --distance?",
file=sys.stderr)
else:
print(msg, file=sys.stderr)
m_to.extrinsics_Rt_fromref( mrcal.compose_Rt( implied_Rt10,
mrcal.Rt_from_rt( m.extrinsics_rt_fromref())))
note = \
"generated on {} with {}\n". \
format(time.strftime("%Y-%m-%d %H:%M:%S"),
' '.join(mrcal.shellquote(s) for s in sys.argv))
m_to.write(file_output, note=note)
if isinstance(file_output, str):
print(f"Wrote '{file_output}'",
file=sys.stderr)
if args.viz:
plotkwargs_extra = {}
if args.set is not None:
plotkwargs_extra['set'] = args.set
if args.unset is not None:
plotkwargs_extra['unset'] = args.unset
if args.title is not None:
plotkwargs_extra['title'] = args.title
if args.extratitle is not None:
plotkwargs_extra['extratitle'] = args.extratitle
# If this is a sampled solve, we don't have projection uncertainties. But we
# do have an implied_Rt10 based on observations, and we can feed that to the
# diff directly.
#
# If this is NOT a sampled solve, then the implied_Rt10 comes from a
# Procrustes fit (minimizing error in 3D space), which is usually not
# close-enough to get a diff. We let the diff method figure out the
# implied_Rt10, and we use the uncertainties that we have to do it
if args.sampled:
use_uncertainties = False
else:
implied_Rt10 = None
use_uncertainties = True
plot,_ = mrcal.show_projection_diff( (m, m_to),
implied_Rt10 = implied_Rt10,
distance = distance_for_diff,
cbmax = args.cbmax,
gridn_width = None if args.gridn is None else args.gridn[0],
gridn_height = None if args.gridn is None else args.gridn[1],
use_uncertainties = use_uncertainties,
hardcopy = args.hardcopy,
terminal = args.terminal,
**plotkwargs_extra)
if args.hardcopy is None:
plot.wait()