-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment_run.py
executable file
·207 lines (163 loc) · 8.48 KB
/
experiment_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python3
import argparse
import os
import shutil
from time import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from util_functions import *
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def dprint(s, DEBUG=True):
if DEBUG:
print(s)
def create_output_folder(dataset, arch_type, trial_num):
out_dir = 'outputs'
if not os.path.exists(out_dir):
os.mkdir(out_dir)
out_dir = out_dir + '/{}'.format(dataset)
if not os.path.exists(out_dir):
os.mkdir(out_dir)
out_dir = out_dir + '/{}'.format(arch_type)
if not os.path.exists(out_dir):
os.mkdir(out_dir)
out_dir = out_dir + '/trial_{}'.format(trial_num)
if os.path.exists(out_dir):
shutil.rmtree(out_dir)
os.mkdir(out_dir)
return out_dir
def dataset_and_model(dataset, batch_size, arch_type):
transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])
if dataset == "mnist":
traindataset = datasets.MNIST('../data', train=True, download=True,transform=transform)
testdataset = datasets.MNIST('../data', train=False, transform=transform)
from archs.mnist import AlexNet, LeNet5, fc1, vgg, resnet
elif dataset == "cifar10":
traindataset = datasets.CIFAR10('../data', train=True, download=True,transform=transform)
testdataset = datasets.CIFAR10('../data', train=False, transform=transform)
from archs.cifar10 import AlexNet, LeNet5, fc1, vgg, resnet, densenet
elif dataset == "fashionmnist":
traindataset = datasets.FashionMNIST('../data', train=True, download=True,transform=transform)
testdataset = datasets.FashionMNIST('../data', train=False, transform=transform)
from archs.mnist import AlexNet, LeNet5, fc1, vgg, resnet
elif dataset == "cifar100":
traindataset = datasets.CIFAR100('../data', train=True, download=True,transform=transform)
testdataset = datasets.CIFAR100('../data', train=False, transform=transform)
from archs.cifar100 import AlexNet, fc1, LeNet5, vgg, resnet
else:
print("\nWrong Dataset choice \n")
exit()
train_loader = torch.utils.data.DataLoader(traindataset, batch_size=batch_size, shuffle=True, num_workers=0,drop_last=False)
test_loader = torch.utils.data.DataLoader(testdataset, batch_size=batch_size, shuffle=False, num_workers=0,drop_last=True)
model = None
if arch_type == "fc1":
model = fc1.fc1().to(device)
elif arch_type == "LeNet5":
model = LeNet5.LeNet5().to(device)
elif arch_type == "AlexNet":
model = AlexNet.AlexNet().to(device)
elif arch_type == "vgg":
model = vgg.vgg16().to(device)
elif arch_type == "resnet":
model = resnet.resnet18().to(device)
elif arch_type == "densenet":
model = densenet.densenet121().to(device)
else:
print("\nWrong Model choice\n")
exit()
return train_loader, test_loader, model
def save_distribution(model, out_file):
dprint("\tSaved distribution")
with open(out_file, 'wb') as f:
np.savetxt(f, extract_non_zero_params(copy_params(model)))
def train_fully(model, mask, num_epochs, train_loader, test_loader, save_distribution_frequency, out_dir, header):
dprint("\nTraining model")
criterion = nn.CrossEntropyLoss()
criterion_sum = nn.CrossEntropyLoss(reduction='sum')
optimizer = torch.optim.Adam(model.parameters(), weight_decay=1e-4)
train_loss = np.zeros(num_epochs+1)
test_loss = np.zeros(num_epochs+1)
test_acc = np.zeros(num_epochs+1)
train_loss[0], _ = get_loss_and_acc(model, train_loader, criterion_sum)
test_loss[0], test_acc[0] = get_loss_and_acc(model, test_loader, criterion_sum)
save_distribution(model, '{}/{}_dist_0.txt'.format(out_dir,header))
for epoch in np.arange(1,num_epochs+1):
train(model, mask, train_loader, optimizer, criterion)
train_loss[epoch], _ = get_loss_and_acc(model, train_loader, criterion_sum)
test_loss[epoch], test_acc[epoch] = get_loss_and_acc(model, test_loader, criterion_sum)
if epoch != num_epochs and epoch % save_distribution_frequency == 0:
save_distribution(model, '{}/{}_dist_{}.txt'.format(out_dir,header,epoch))
dprint("\tFinished epoch {} with train_loss = {}, test_loss = {}, test_acc = {}".format(epoch,train_loss[epoch], test_loss[epoch], test_acc[epoch]))
save_distribution(model, '{}/{}_dist_{}.txt'.format(out_dir,header,num_epochs))
with open('{}/{}_test_acc.txt'.format(out_dir,header),'wb') as f:
np.savetxt(f, test_acc)
with open('{}/{}_test_loss.txt'.format(out_dir,header),'wb') as f:
np.savetxt(f, test_loss)
with open('{}/{}_train_loss.txt'.format(out_dir,header),'wb') as f:
np.savetxt(f, train_loss)
dprint("\tSaved loss and accuracy curves")
dprint("\tFinished Training Model")
def main(args, trial_num):
train_loader, test_loader, model = dataset_and_model(args.dataset, args.batch_size, args.arch_type)
dprint("\nLoaded data and model")
optimizer = torch.optim.Adam(model.parameters(),weight_decay=1e-4)
criterion = nn.CrossEntropyLoss()
criterion_sum = nn.CrossEntropyLoss(reduction='sum')
out_dir = create_output_folder(args.dataset, args.arch_type, trial_num)
dprint("\nCreated outdir: {}".format(out_dir))
dprint("\nCreating pruned models")
model_pruning_trainer = lambda model, mask: train(model, mask, train_loader, optimizer, criterion)
pruned_models = create_pruned_models(model, model_pruning_trainer, 100*args.pruning_s, args.pruning_j, args.pruning_n)
dprint("Created pruned models")
experiment_runner = lambda model, mask, out_dir, header: train_fully(model, mask, args.num_epochs, train_loader, test_loader, args.save_dist_freq, out_dir, header)
mask_0, theta_0 = pruned_models[0]
D_0 = extract_non_zero_params(theta_0)
reinitialize_model(model, theta_0, mask_0)
dprint("\nReinitialized with theta_0, full. Starting run")
experiment_runner(model, mask_0, out_dir, '0_full_Dinit')
for n in args.pruning_n:
dprint("\nStarting new n: {}".format(n))
mask_n, theta_n = pruned_models[n]
D_n = extract_non_zero_params(theta_n)
#pruned, D_init
reinitialize_model(model, theta_0, mask_n)
dprint("\nReinitialized with theta_0, pruned. Starting run")
experiment_runner(model, mask_n, out_dir, '{}_pruned_Dinit'.format(n))
#pruned, D_n
reinitialize_model_sample(model, D_n, mask_n)
dprint("\nReinitialized with D_n, pruned. Starting run")
experiment_runner(model, mask_n, out_dir, '{}_pruned_Dn'.format(n))
#pruned, D_0
#reinitialize_model_sample(model, D_0, mask_n)
#dprint("\nReinitialized with D_0, pruned. starting run")
#experiment_runner(model, mask_n, out_dir, '{}_pruned_D0'.format(n))
#full, D_n
#reinitialize_model_sample(model, D_n, mask_0)
#dprint("\nReinitialized with D_n, full. starting run")
#experiment_runner(model, mask_0, out_dir, '{}_full_Dn'.format(n))
#random_pruned, D_n
random_mask_n = permute_mask(mask_n)
reinitialize_model_sample(model, D_n, random_mask_n)
dprint("\nReinitialized with D_n, random_pruned. Starting run")
experiment_runner(model, random_mask_n, out_dir, '{}_randompruned_Dn'.format(n))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--num_epochs', type=int, default=150)
parser.add_argument('--dataset', type=str, default='mnist')
parser.add_argument('--arch_type', type=str, default='fc1')
parser.add_argument('--pruning_s', type=float, default=.20)
parser.add_argument('--pruning_j', type=int, default=5)
parser.add_argument('--pruning_n', type=int, nargs='+', default=[6,10])
parser.add_argument('--num_trials', type=int, default=5)
parser.add_argument('--save_dist_freq', type=int, default=50)
args = parser.parse_args()
dprint("EXPERIMENT_RUN: BS = {} EPOCHS = {} DATA = {} ARCH = {} NUM_TRIALS = {}\n".format(args.batch_size, args.num_epochs, args.dataset, args.arch_type, args.num_trials))
for trial_num in range(1, args.num_trials+1):
dprint("STARTING TRIAL: {}".format(trial_num))
main(args, trial_num)
dprint("FINISHED EXPERIMENT")