-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fl.py
195 lines (149 loc) · 7.24 KB
/
train_fl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
import torch.optim as optim
import numpy as np
import argparse
import pickle
import os
from collections import defaultdict
from itertools import count
from utils import add_args, set_seed, setup, make_grid, get_rewards, make_model, get_one_hot, get_mask
def get_train_args():
parser = argparse.ArgumentParser(description='Forward-looking-based GFlowNets for hypergrid environments')
parser.add_argument(
'--uniform_PB', type=int, choices=[0, 1], default=0
)
return parser
def main():
device = torch.device('cuda')
parser = get_train_args()
args = add_args(parser)
set_seed(args.seed)
n = args.n
h = args.h
R0 = args.R0
R1 = args.R1
R2 = args.R2
bsz = args.bsz
exp_name = 'fl_{}_{}_{}_{}_{}_{}_{}'.format(n, h, R0, args.lr, args.uniform_PB, args.temp, args.epsilon)
logger, exp_path = setup(exp_name, args)
coordinate = h ** torch.arange(n, device=device)
grid = make_grid(n, h)
true_rewards = get_rewards(grid, h, R0, R1, R2)
modes = true_rewards.view(-1) >= true_rewards.max()
num_modes = modes.sum().item()
true_rewards = true_rewards.view((h,) * n)
true_density = true_rewards.log().flatten().softmax(0).cpu().numpy()
first_visited_states = -1 * np.ones_like(true_density)
model = make_model([n * h] + [args.hidden_size] * args.num_layers + [2 * n + 2])
model.to(device)
optimizer = optim.Adam(params=model.parameters(), lr=args.lr)
total_loss = []
total_l1_error = []
total_visited_states = []
for step in range(1, args.num_steps + 1):
optimizer.zero_grad()
# initial state: s_0 = [0, 0]
states = torch.zeros((bsz, n), dtype=torch.long, device=device)
# initial done trajectories: False
dones = torch.full((bsz,), False, dtype=torch.bool, device=device)
trajectories = defaultdict(list)
while torch.any(~dones):
# ~dones: non-dones
non_done_states = states[~dones]
# Outputs: [logits_PF, logits_PB, logF]
with torch.no_grad():
outputs = model(get_one_hot(non_done_states, h))
# Forward policy
prob_mask = get_mask(non_done_states, h)
log_probs = torch.log_softmax(outputs[:, :n + 1] - 1e10 * prob_mask, -1)
temp_probs = (log_probs / args.temp).softmax(1)
uniform_probs = (1 - prob_mask) / (1 - prob_mask).sum(dim=-1, keepdim=True)
sampling_probs = (1 - args.epsilon) * temp_probs + args.epsilon * uniform_probs
actions = sampling_probs.multinomial(1)
child_states = non_done_states + 0
for i, action in enumerate(actions.squeeze(-1)):
if action < n:
child_states[i, action] += 1
terminates = (actions.squeeze(-1) == n)
# Update batches
c = count(0)
m = {j: next(c) for j in range(bsz) if not dones[j]}
for (i, _), p, a, c, t in zip(
sorted(m.items()), non_done_states, actions, child_states, terminates.float()
):
lr_p = get_rewards(p, h, R0, R1, R2).log()
lr_c = get_rewards(c, h, R0, R1, R2).log()
trajectories[i].append(
[p.view(1, -1), a.view(1, -1), c.view(1, -1), lr_p.view(-1), lr_c.view(-1), t.view(-1)]
)
for state in non_done_states[terminates]:
state_id = (state * coordinate).sum().item()
total_visited_states.append(state_id)
if first_visited_states[state_id] < 0:
first_visited_states[state_id] = step
# Update dones
dones[~dones] |= terminates
# Update non-done trajectories
states[~dones] = child_states[~terminates]
parent_states, parent_actions, child_states, log_parent_rewards, log_child_rewards, finishes = [
torch.cat(i) for i in zip(*[traj for traj in sum(trajectories.values(), [])])
]
# log F˜(s_{t}) + log R(s_{t}) + log P_F(s_{t+1} | s_{t})
# log F(s0 --> s1) = log F˜(s0) + log R(s_{0}) + log P_F(s1 | s0)
# log F(s1 --> s2) = log F˜(s1) + log R(s_{1}) + log P_F(s2 | s1)
# log F(s2 --> sf) = log F˜(s2) + log R(s_{2}) + log P_F(sf | s2)
p_outputs = model(get_one_hot(parent_states, h))
log_fl_flowF, logits_PF = p_outputs[:, 2 * n + 1], p_outputs[:, :n + 1]
prob_mask = get_mask(parent_states, h)
log_ProbF = torch.log_softmax(logits_PF - 1e10 * prob_mask, -1)
log_PF_sa = log_ProbF.gather(dim=1, index=parent_actions).squeeze(1)
# log F˜(s_{t+1}) + log R(s_{t+1}) + log P_B(s_{t} | s_{t+1})
# log F(s0 --> s1) = log F˜(s1) + log R(s_{1}) + log P_B(s0 | s1)
# log F(s1 --> s2) = log F˜(s2) + log R(s_{2}) + log P_B(s1 | s2)
# log F(s2 --> sf) = log R(s2)
c_outputs = model(get_one_hot(child_states, h))
log_fl_flowB, logits_PB = c_outputs[:, 2 * n + 1], c_outputs[:, n + 1:2 * n + 1]
logits_PB = (0 if args.uniform_PB else 1) * logits_PB
edge_mask = get_mask(child_states, h, is_backward=True)
log_ProbB = torch.log_softmax(logits_PB - 1e10 * edge_mask, -1)
log_ProbB = torch.cat([log_ProbB, torch.zeros((log_ProbB.size(0), 1), device=device)], 1)
log_PB_sa = log_ProbB.gather(dim=1, index=parent_actions).squeeze(1)
log_fl_flowB = log_fl_flowB * (1 - finishes)
# [log F˜(s0) + log R(s_{0}) + log P_F(s1 | s0)] - [log F˜(s1) + log R(s_{1}) + log P_B(s0 | s1)]
# [log F˜(s1) + log R(s_{1}) + log P_F(s2 | s1)] - [log F˜(s2) + log R(s_{2}) + log P_B(s1 | s2)]
# [log F˜(s2) + log R(s_{2}) + log P_F(sf | s2)] - [log R(s2)]
loss = (log_fl_flowF + log_parent_rewards + log_PF_sa) - (log_fl_flowB + log_child_rewards + log_PB_sa)
loss = loss.pow(2).mean()
loss.backward()
optimizer.step()
total_loss.append(loss.item())
if step % 100 == 0:
empirical_density = np.bincount(total_visited_states[-200000:], minlength=len(true_density)).astype(float)
l1 = np.abs(true_density - empirical_density / empirical_density.sum()).mean()
total_l1_error.append((len(total_visited_states), l1))
first_state_founds = torch.from_numpy(first_visited_states)[modes].long()
mode_founds = (0 <= first_state_founds) & (first_state_founds <= step)
logger.info(
'Step: %d, \tLoss: %.5f, \tL1: %.5f, \t\tModes found: [%d/%d]' % (
step,
np.array(total_loss[-100:]).mean(),
l1,
mode_founds.sum().item(),
num_modes
)
)
with open(os.path.join(exp_path, 'model.pt'), 'wb') as f:
torch.save(model, f)
pickle.dump(
{
'total_loss': total_loss,
'total_visited_states': total_visited_states,
'first_visited_states': first_visited_states,
'num_visited_states_so_far': [a[0] for a in total_l1_error],
'total_l1_error': [a[1] for a in total_l1_error]
},
open(os.path.join(exp_path, 'out.pkl'), 'wb')
)
logger.info('Done.')
if __name__ == '__main__':
main()