-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstraightline_utils.py
105 lines (89 loc) · 2.79 KB
/
straightline_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# numpy: numerical library
import numpy as np
# avoid broken installs by forcing Agg backend...
#import matplotlib
#matplotlib.use('Agg')
# pylab: matplotlib's matlab-like interface
import pylab as plt
# The data we will fit:
# x, y, sigma_y
data1 = np.array([[201,592,61],[244,401,25],[47,583,38],[287,402,15],[203,495,21],
[58,173,15],[210,479,27],[202,504,14],[198,510,30],[158,416,16],
[165,393,14],[201,442,25],[157,317,52],[131,311,16],[166,400,34],
[160,337,31],[186,423,42],[125,334,26],[218,533,16],[146,344,22]]).astype(float)
# plotting limits
xlimits = [0,250]
ylimits = [100,600]
title_prefix = 'Straight line'
plot_format = '.png'
mlimits = [1.9, 2.6]
blimits = [-20, 80]
mlo,mhi = mlimits
blo,bhi = blimits
slo,shi = [0.001,100]
def pdf_contour_levels(p):
sortp = np.sort(p.ravel())
cump = sortp.cumsum()
return [sortp[cump > cump.max() * f].min()
for f in [0.32, 0.05]]
def plot_mcmc_results(chain):
# Pull m and b arrays out of the Markov chain.
mm = [m for b,m in chain]
bb = [b for b,m in chain]
# Scatterplot of m,b posterior samples
plt.clf()
plt.contour(bgrid, mgrid, posterior, pdf_contour_levels(posterior))
plt.plot(bb, mm, 'b.', alpha=0.1)
plot_mb_setup()
plt.show()
# Histograms
import triangle
triangle.corner(chain, labels=['b','m'], extents=[0.99]*2)
plt.show()
# Traces
plt.clf()
plt.subplot(2,1,1)
plt.plot(mm, 'k-')
plt.ylim(mlo,mhi)
plt.ylabel('m')
plt.subplot(2,1,2)
plt.plot(bb, 'k-')
plt.ylabel('b')
plt.ylim(blo,bhi)
plt.show()
def plot_mb_setup():
plt.xlabel('intercept b')
plt.ylabel('slope m')
plt.axis([blo,bhi, mlo,mhi])
def get_data_no_outliers():
# pull out the x, y, and sigma_y columns, which have been packed into the
# "data1" matrix. "data1" has shape (20,3). ":" means "everything in
# that dimension". Some of the first 5 points are outliers so for this
# part we only grab from index 5 on, with magic "5:"
x = data1[5:,0]
y = data1[5:,1]
sigmay = data1[5:,2]
return (x, y, sigmay)
def get_data_with_outliers():
x = data1[:,0]
y = data1[:,1]
sigmay = data1[:,2]
return x,y,sigmay
# Plot data with error bars, standard axis limits, etc.
def plot_yerr(x, y, sigmay):
# plot data with error bars
plt.errorbar(x, y, yerr=sigmay, fmt='.', ms=7, lw=1, color='k')
# if you put '$' in you can make Latex labels
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.xlim(*xlimits)
plt.ylim(*ylimits)
plt.title(title_prefix)
# Plot a y = mx + b line.
def plot_line(m, b, **kwargs):
x = np.array(xlimits)
y = b + m*x
p = plt.plot(x, y, 'k-', alpha=0.5, **kwargs)
plt.xlim(*xlimits)
plt.ylim(*ylimits)
return p