diff --git a/sits.Rproj b/sits.Rproj index 16c4a9cba..c1d6889aa 100644 --- a/sits.Rproj +++ b/sits.Rproj @@ -1,5 +1,4 @@ Version: 1.0 -ProjectId: 285a470e-fd26-4cdb-ae88-2e3d6112030d RestoreWorkspace: Default SaveWorkspace: Ask diff --git a/tests/testthat/test-apply.R b/tests/testthat/test-apply.R index 4c9436f30..6dd49a77f 100644 --- a/tests/testthat/test-apply.R +++ b/tests/testthat/test-apply.R @@ -88,18 +88,6 @@ test_that("Testing normalized index generation", { start_date <- timeline[1] end_date <- timeline[length(timeline)] - # test with data frame - # - gc_cube2 <- gc_cube - class(gc_cube2) <- "data.frame" - - gc_cube2 <- sits_apply(gc_cube2, - NDRE = (B8A - B05) / (B8A + B05), - multicores = 1, - output_dir = dir_images - ) - expect_true("NDRE" %in% sits_bands(gc_cube2)) - csv_tb <- purrr::map2_dfr(lats, longs, function(lat, long) { tibble::tibble( longitude = long, diff --git a/tests/testthat/test-bands.R b/tests/testthat/test-bands.R index e58506a11..91ac69a94 100644 --- a/tests/testthat/test-bands.R +++ b/tests/testthat/test-bands.R @@ -17,8 +17,4 @@ test_that("band rename", { new_band <- sits_bands(sinop) expect_equal(new_band, "NDVI2") - sp <- sinop - class(sinop) <- "data.frame" - bands_cube <- sits_bands(sinop) - expect_equal(bands_cube, "NDVI2") }) diff --git a/tests/testthat/test-clustering.R b/tests/testthat/test-clustering.R index e39b92964..29c674883 100644 --- a/tests/testthat/test-clustering.R +++ b/tests/testthat/test-clustering.R @@ -43,14 +43,4 @@ test_that("Creating a dendrogram and clustering the results", { expect_true(sits_cluster_frequency(clusters_new)[3, 1] > sits_cluster_frequency(clean)[3, 1]) - # test default - samples_df <- cerrado_2classes - class(samples_df) <- "data.frame" - clusters_df <- suppressMessages( - sits_cluster_dendro( - samples_df, - bands = c("NDVI", "EVI") - ) - ) - expect_equal(nrow(clusters_df), 746) }) diff --git a/tests/testthat/test-cube-bdc.R b/tests/testthat/test-cube-bdc.R index bc66e0f2c..86b52fa4c 100644 --- a/tests/testthat/test-cube-bdc.R +++ b/tests/testthat/test-cube-bdc.R @@ -105,29 +105,8 @@ test_that("Creating cubes from BDC - MOD13Q1-6.1 based on ROI using sf object", intersects <- .cube_intersects(modis_cube, sf_mt) expect_true(all(intersects)) - modis_cube2 <- modis_cube - class(modis_cube2) <- "data.frame" - in2 <- .cube_intersects(modis_cube2, sf_mt) - expect_true(all(in2)) - expect_true(.tile_intersects(modis_cube2[1,], sf_mt)) - expect_false(.tile_within(modis_cube2[1,], sf_mt)) - expect_false(.tile_within(modis_cube2[6,], sf_mt)) - modis_cube3 <- .cube_filter_spatial(modis_cube2, sf_mt) - expect_equal(nrow(modis_cube2), nrow(modis_cube3)) - - modis_cube4 <- .cube_filter_bands(modis_cube2, "EVI") - expect_true(.cube_bands(modis_cube4) %in% .cube_bands(modis_cube2)) - tile <- modis_cube2[1,] - modis_evi <- .tile_filter_bands(tile, "EVI") - expect_equal("EVI", sits_bands(modis_evi)) - - modis_tiles <- .cube_tiles(modis_cube2) - expect_true(all(c("011009", "012010") %in% .cube_tiles(modis_cube))) - - tile_011009 <- .cube_filter_tiles(modis_cube, "011009") - expect_equal(nrow(tile_011009), 1) }) test_that("Creating cubes from BDC - MOD13Q1-6.1 invalid roi", { diff --git a/tests/testthat/test-cube-mpc.R b/tests/testthat/test-cube-mpc.R index d2384d307..8a8f448d2 100644 --- a/tests/testthat/test-cube-mpc.R +++ b/tests/testthat/test-cube-mpc.R @@ -254,30 +254,6 @@ test_that("Creating cubes from MPC - MOD13Q1-6.1 based on ROI using sf object", intersects <- .cube_intersects(modis_cube, sf_mt) expect_true(all(intersects)) - modis_cube2 <- modis_cube - class(modis_cube2) <- "data.frame" - in2 <- .cube_intersects(modis_cube2, sf_mt) - expect_true(all(in2)) - expect_true(.tile_intersects(modis_cube2[1,], sf_mt)) - - expect_false(.tile_within(modis_cube2[1,], sf_mt)) - expect_false(.tile_within(modis_cube2[6,], sf_mt)) - - modis_cube3 <- .cube_filter_spatial(modis_cube2, sf_mt) - expect_equal(nrow(modis_cube2), nrow(modis_cube3)) - - modis_cube4 <- .cube_filter_bands(modis_cube2, "EVI") - expect_true(.cube_bands(modis_cube4) %in% .cube_bands(modis_cube2)) - tile <- modis_cube2[1,] - modis_evi <- .tile_filter_bands(tile, "EVI") - expect_equal("EVI", sits_bands(modis_evi)) - - modis_tiles <- .cube_tiles(modis_cube2) - expect_true(all(c("h13v10", "h13v9") %in% .cube_tiles(modis_cube))) - - tile_h13v10 <- .cube_filter_tiles(modis_cube, "h13v10") - expect_equal(nrow(tile_h13v10), 1) - }) test_that("Creating cubes from MPC - MOD09A1-6.1 based on ROI using sf object", { shp_file <- system.file( diff --git a/tests/testthat/test-mixture_model.R b/tests/testthat/test-mixture_model.R index a02c47464..9b0132c63 100644 --- a/tests/testthat/test-mixture_model.R +++ b/tests/testthat/test-mixture_model.R @@ -82,7 +82,6 @@ test_that("Mixture model tests", { csv_file <- paste0(tempdir(), "/mmodel.csv") reg_cube3 <- reg_cube - class(reg_cube3) <- "data.frame" mm_rmse_csv <- sits_mixture_model( data = reg_cube3, endmembers = csv_file, diff --git a/tests/testthat/test-raster.R b/tests/testthat/test-raster.R index 95f3796dc..2137e1ff2 100644 --- a/tests/testthat/test-raster.R +++ b/tests/testthat/test-raster.R @@ -61,9 +61,6 @@ test_that("Classification with rfor (single core)", { # defaults and errors expect_error(sits_classify(probs_cube, rf_model)) - sinop_df <- sinop - class(sinop_df) <- "data.frame" - expect_error(sits_classify(sinop_df, rfor_model, output_dir = tempdir())) expect_true(all(file.remove(unlist(sinop_probs$file_info[[1]]$path)))) }) test_that("Classification with SVM", { @@ -446,94 +443,6 @@ test_that("Classification with post-processing", { dir.create(output_dir) } - sinop2c <- sits:::.cube_find_class(sinop) - expect_true("raster_cube" %in% class(sinop2c)) - expect_true("eo_cube" %in% class(sinop2c)) - - sinop2 <- sinop - class(sinop2) <- "data.frame" - new_cube <- sits:::.cube_find_class(sinop2) - expect_true("raster_cube" %in% class(new_cube)) - expect_true("eo_cube" %in% class(new_cube)) - - bands <- .cube_bands(sinop2) - expect_equal(bands, "NDVI") - - path1 <- .tile_path(sinop2, date = "2013-09-14", - band = "NDVI") - expect_true(grepl("jp2", path1)) - - expect_equal(.tile_source(sinop2), "BDC") - expect_equal(.tile_collection(sinop2), "MOD13Q1-6.1") - expect_equal(.tile_satellite(sinop2), "TERRA") - expect_equal(.tile_sensor(sinop2), "MODIS") - expect_equal(.tile_bands(sinop2), "NDVI") - expect_equal(.tile_ncols(sinop2), 255) - expect_equal(.tile_nrows(sinop2), 147) - expect_equal(.tile_size(sinop2)$ncols, 255) - expect_equal(.tile_size(sinop2)$nrows, 147) - expect_gt(.tile_xres(sinop2), 231) - expect_gt(.tile_yres(sinop2), 231) - expect_equal(as.Date(.tile_start_date(sinop2)), as.Date("2013-09-14")) - expect_equal(as.Date(.tile_end_date(sinop2)), as.Date("2014-08-29")) - expect_equal(.tile_fid(sinop), .tile_fid(sinop2)) - expect_equal(.tile_crs(sinop), .tile_crs(sinop2)) - expect_error(.tile_area_freq(sinop)) - expect_equal(.tile_timeline(sinop), .tile_timeline(sinop2)) - expect_true(.tile_is_complete(sinop2)) - band_conf <- .tile_band_conf(sinop2, band = "NDVI") - expect_equal(band_conf$band_name, "NDVI") - - expect_error(.cube_find_class(samples_modis_ndvi)) - - is_complete <- .cube_is_complete(sinop2) - expect_true(is_complete) - - time_tb <- .cube_timeline_acquisition(sinop2, period = "P2M", origin = NULL) - expect_equal(nrow(time_tb), 6) - expect_equal(time_tb[[1,1]], as.Date("2013-09-14")) - - bbox <- .cube_bbox(sinop2) - expect_equal(bbox[["xmin"]], -6073798) - bbox2 <- .tile_bbox(sinop2) - expect_equal(bbox2[["xmin"]], -6073798) - - sf_obj <- .cube_as_sf(sinop2) - bbox3 <- sf::st_bbox(sf_obj) - expect_equal(bbox[["xmin"]], bbox3[["xmin"]]) - - sf_obj2 <- .tile_as_sf(sinop2) - bbox4 <- sf::st_bbox(sf_obj2) - expect_equal(bbox[["xmin"]], bbox4[["xmin"]]) - - expect_true(.cube_during(sinop2, "2014-01-01", "2014-04-01")) - expect_true(.tile_during(sinop2, "2014-01-01", "2014-04-01")) - - t <- .cube_filter_interval(sinop2, "2014-01-01", "2014-04-01") - expect_equal(length(sits_timeline(t)), 3) - - t1 <- .tile_filter_interval(sinop2, "2014-01-01", "2014-04-01") - expect_equal(length(sits_timeline(t1)), 3) - - timeline <- sits_timeline(sinop2) - dates <- as.Date(c(timeline[1], timeline[3], timeline[5])) - t2 <- .cube_filter_dates(sinop2, dates) - expect_equal(.tile_timeline(t2), dates) - - paths <- .cube_paths(sinop2)[[1]] - expect_equal(length(paths), 12) - expect_true(grepl("jp2", paths[12])) - - expect_true(.cube_is_local(sinop2)) - - cube <- .cube_split_features(sinop2) - expect_equal(nrow(cube), 12) - - cube <- .cube_split_assets(sinop2) - expect_equal(nrow(cube), 12) - - expect_false(.cube_contains_cloud(sinop2)) - sinop_probs <- sits_classify( data = sinop, ml_model = rfor_model, @@ -574,27 +483,6 @@ test_that("Classification with post-processing", { expect_true(max_lab == 4) expect_true(min_lab == 1) - # test access for data.frame objects - # - sinop4 <- sinop_class - class(sinop4) <- "data.frame" - new_cube4 <- .cube_find_class(sinop4) - expect_true("raster_cube" %in% class(new_cube4)) - expect_true("derived_cube" %in% class(new_cube4)) - expect_true("class_cube" %in% class(new_cube4)) - - labels <- .cube_labels(sinop4) - expect_true(all(c("Cerrado", "Forest", "Pasture","Soy_Corn") %in% labels)) - labels <- .tile_labels(sinop4) - expect_true(all(c("Cerrado", "Forest", "Pasture","Soy_Corn") %in% labels)) - - labels <- sits_labels(sinop4) - expect_true(all(c("Cerrado", "Forest", "Pasture","Soy_Corn") %in% labels)) - - sits_labels(sinop4) <- c("Cerrado", "Floresta", "Pastagem","Soja_Milho") - labels <- sits_labels(sinop4) - expect_true("Cerrado" %in% labels) - expect_equal(.tile_area_freq(sinop_class)[1,3],.tile_area_freq(sinop4)[1,3]) expect_error(.tile_update_label( @@ -602,45 +490,6 @@ test_that("Classification with post-processing", { c("Cerrado", "Floresta", "Pastagem","Soja_Milho") )) - class(sinop4) <- "data.frame" - col <- .cube_collection(sinop4) - expect_equal(col, "MOD13Q1-6.1") - - col <- .tile_collection(sinop4) - expect_equal(col, "MOD13Q1-6.1") - - crs <- .cube_crs(sinop4) - expect_true(grepl("Sinusoidal", crs)) - expect_true(grepl("Sinusoidal", .tile_crs(sinop4))) - - class <- .cube_s3class(sinop4) - expect_true("raster_cube" %in% class) - expect_true("derived_cube" %in% class) - expect_true("class_cube" %in% class) - - expect_equal(.cube_ncols(sinop4), 255) - expect_equal(.tile_ncols(sinop4), 255) - expect_equal(.cube_nrows(sinop4), 147) - expect_equal(.tile_nrows(sinop4), 147) - expect_equal(.cube_source(sinop4), "BDC") - expect_equal(.tile_source(sinop4), "BDC") - expect_equal(.cube_collection(sinop4), "MOD13Q1-6.1") - expect_equal(.tile_collection(sinop4), "MOD13Q1-6.1") - - sd <- .cube_start_date(sinop4) - expect_equal(sd, as.Date("2013-09-14")) - - ed <- .cube_end_date(sinop4) - expect_equal(ed, as.Date("2014-08-29")) - - timeline <- .cube_timeline(sinop4)[[1]] - expect_equal(timeline[1], sd) - expect_equal(timeline[2], ed) - - size <- .tile_size(sinop4) - expect_equal(size$nrows, 147) - expect_true(.tile_is_complete(sinop4)) - # Save QML file qml_file <- paste0(tempdir(),"/myfile.qml") sits_colors_qgis(sinop_class, qml_file) @@ -711,13 +560,6 @@ test_that("Classification with post-processing", { max_unc <- max(.raster_get_values(r_unc)) expect_true(max_unc <= 10000) - sinop5 <- sinop_uncert - class(sinop5) <- "data.frame" - new_cube5 <- .cube_find_class(sinop5) - expect_true("raster_cube" %in% class(new_cube5)) - expect_true("derived_cube" %in% class(new_cube5)) - expect_true("uncert_cube" %in% class(new_cube5)) - timeline_orig <- sits_timeline(sinop) timeline_probs <- sits_timeline(sinop_probs) @@ -734,12 +576,6 @@ test_that("Classification with post-processing", { expect_equal(timeline_orig[length(timeline_orig)], timeline_class[2]) - sinop6 <- sinop_probs - class(sinop6) <- "data.frame" - - sinop_bayes_3 <- sits_smooth(sinop6, output_dir = tempdir()) - expect_equal(sits_bands(sinop_bayes_3), "bayes") - expect_error(sits_smooth(sinop, output_dir = tempdir())) expect_error(sits_smooth(sinop_class, output_dir = tempdir())) expect_error(sits_smooth(sinop_uncert, output_dir = tempdir())) @@ -817,21 +653,6 @@ test_that("Clean classification",{ sits_clean(cube = sinop_probs, output_dir = output_dir) ) - sp <- sinop_class - class(sp) <- "data.frame" - - clean_cube2 <- sits_clean( - cube = sp, - output_dir = output_dir, - version = "v2", - progress = FALSE - ) - sum_clean2 <- summary(clean_cube2) - - expect_equal(nrow(sum_orig), nrow(sum_clean2)) - expect_equal(sum(sum_orig$count), sum(sum_clean2$count)) - expect_lt(sum_orig[2,4], sum_clean2[2,4]) - }) test_that("Clean classification with class cube from STAC",{ cube_roi <- c("lon_min" = -62.7, "lon_max" = -62.5, diff --git a/tests/testthat/test-regularize.R b/tests/testthat/test-regularize.R index 065f20d10..d7616ca43 100644 --- a/tests/testthat/test-regularize.R +++ b/tests/testthat/test-regularize.R @@ -47,31 +47,13 @@ test_that("Regularizing cubes from AWS, and extracting samples from them", { expect_equal(.tile_ncols(rg_cube), 458) expect_equal(tile_bbox$xmax, 309780, tolerance = 1e-1) expect_equal(tile_bbox$xmin, 199980, tolerance = 1e-1) - tile_fileinfo <- .fi(rg_cube) - expect_equal(nrow(tile_fileinfo), 2) - # Checking input class - s2_cube <- s2_cube_open - class(s2_cube) <- "data.frame" - expect_error( - sits_regularize( - cube = s2_cube, - output_dir = dir_images, - res = 240, - period = "P16D", - multicores = 2, - progress = FALSE - ) - ) - # Retrieving data - csv_file <- system.file("extdata/samples/samples_amazonia.csv", package = "sits" ) - # read sample information from CSV file and put it in a tibble samples <- tibble::as_tibble(utils::read.csv(csv_file)) diff --git a/tests/testthat/test-tibble.R b/tests/testthat/test-tibble.R index e2a0d6840..6eac64340 100644 --- a/tests/testthat/test-tibble.R +++ b/tests/testthat/test-tibble.R @@ -26,12 +26,6 @@ test_that("Apply", { tolerance = 0.1 ) }) -test_that("Data frame",{ - point_df <- point_mt_6bands - class(point_df) <- "data.frame" - point_df_ndvi <- sits_select(point_df, bands = "NDVI") - expect_equal(sits_bands(point_df_ndvi), "NDVI") -}) test_that("Bands", { bands <- sits_bands(samples_modis_ndvi) diff --git a/tests/testthat/test-variance.R b/tests/testthat/test-variance.R index 8dc5e589d..cf4e77c0e 100644 --- a/tests/testthat/test-variance.R +++ b/tests/testthat/test-variance.R @@ -23,19 +23,9 @@ test_that("Variance cube", { # check is variance cube .check_is_variance_cube(var_cube) - varc <- var_cube - class(varc) <- "data.frame" - new_cube <- .cube_find_class(varc) - expect_true("raster_cube" %in% class(new_cube)) - expect_true("derived_cube" %in% class(new_cube)) - expect_true("variance_cube" %in% class(new_cube)) - - r_obj <- .raster_open_rast(var_cube$file_info[[1]]$path[[1]]) - max_lyr1 <- max(.raster_get_values(r_obj)[, 1], na.rm = TRUE) expect_true(max_lyr1 <= 4000) - max_lyr3 <- max(.raster_get_values(r_obj)[, 3], na.rm = TRUE) expect_true(max_lyr3 <= 4000) @@ -54,24 +44,7 @@ test_that("Variance cube", { ) expect_error(sits_variance(class_cube, output_dir = tempdir())) - probs_df <- probs_cube - class(probs_df) <- "data.frame" - # test reading cube as data frame - df_var <- sits_variance( - cube = probs_df, - output_dir = tempdir(), - version = "vardf" - ) - r_obj <- .raster_open_rast(df_var$file_info[[1]]$path[[1]]) - - max_lyr1 <- max(.raster_get_values(r_obj)[, 1], na.rm = TRUE) - expect_true(max_lyr1 <= 4000) - - max_lyr3 <- max(.raster_get_values(r_obj)[, 3], na.rm = TRUE) - expect_true(max_lyr3 <= 4000) - expect_true(all(file.remove(unlist(probs_cube$file_info[[1]]$path)))) - expect_true(all(file.remove(unlist(df_var$file_info[[1]]$path)))) expect_true(all(file.remove(unlist(var_cube$file_info[[1]]$path)))) expect_true(all(file.remove(unlist(class_cube$file_info[[1]]$path)))) })