forked from baowenbo/DAIN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_args.py
247 lines (201 loc) · 8.1 KB
/
my_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import datetime
import argparse
import numpy
import torch
import shutil
import networks
modelnames = networks.__all__
# import datasets
datasetNames = ('Vimeo_90K_interp') #datasets.__all__
parser = argparse.ArgumentParser(description='DAIN')
parser.add_argument('--debug',
action='store_true',
help='Enable debug mode')
parser.add_argument('--netName',
type=str,
default='DAIN',
choices=modelnames,
help='model architecture: '+' | '.join(modelnames)+' (default: DAIN)')
parser.add_argument('--datasetName',
default='Vimeo_90K_interp',
choices=datasetNames,
nargs='+',
help='dataset type : '+' | '.join(datasetNames)+' (default: Vimeo_90K_interp)')
parser.add_argument('--datasetPath',
default='',
help='the path of selected datasets')
parser.add_argument('--dataset_split',
type=int,
default=97,
help='Split a dataset into training and validation by percentage (default: 97)')
parser.add_argument('--seed',
type=int,
default=1,
help='random seed (default: 1)')
parser.add_argument('--numEpoch',
'-e',
type=int,
default=100,
help='Number of epochs to train(default:150)')
parser.add_argument('--batch_size',
'-b',
type=int,
default=1,
help='batch size (default:1)')
parser.add_argument('--workers',
'-w',
type=int,
default=8,
help='parallel workers for loading training samples (default : 1.6*10 = 16)')
parser.add_argument('--channels',
'-c',
type=int,
default=3,
choices=[1, 3],
help='channels of images (default:3)')
parser.add_argument('--filter_size',
'-f',
type=int,
default=4,
help='the size of filters used (default: 4)',
choices=[2, 4, 6, 5, 51]
)
parser.add_argument('--lr',
type=float,
default=0.002,
help='the basic learning rate for three subnetworks (default: 0.002)')
parser.add_argument('--rectify_lr',
type=float,
default=0.001,
help='the learning rate for rectify/refine subnetworks (default: 0.001)')
parser.add_argument('--save_which',
'-s',
type=int,
default=1,
choices=[0, 1],
help='choose which result to save: 0 ==> interpolated, 1==> rectified')
parser.add_argument('--time_step',
type=float,
default=0.5,
help='choose the time steps')
parser.add_argument('--flow_lr_coe',
type=float,
default=0.01,
help='relative learning rate w.r.t basic learning rate (default: 0.01)')
parser.add_argument('--occ_lr_coe',
type=float,
default=1.0,
help='relative learning rate w.r.t basic learning rate (default: 1.0)')
parser.add_argument('--filter_lr_coe',
type=float,
default=1.0,
help='relative learning rate w.r.t basic learning rate (default: 1.0)')
parser.add_argument('--ctx_lr_coe',
type=float,
default=1.0,
help='relative learning rate w.r.t basic learning rate (default: 1.0)')
parser.add_argument('--depth_lr_coe',
type=float,
default=0.001,
help='relative learning rate w.r.t basic learning rate (default: 0.01)')
# parser.add_argument('--deblur_lr_coe',
# type=float,
# default=0.01,
# help='relative learning rate w.r.t basic learning rate (default: 0.01)')
parser.add_argument('--alpha',
type=float,
nargs='+',
default=[0.0, 1.0],
help='the ration of loss for interpolated and rectified result (default: [0.0, 1.0])')
parser.add_argument('--epsilon',
type=float,
default=1e-6,
help='the epsilon for charbonier loss,etc (default: 1e-6)')
parser.add_argument('--weight_decay',
type=float,
default=0,
help='the weight decay for whole network ')
parser.add_argument('--patience',
type=int,
default=5,
help='the patience of reduce on plateou')
parser.add_argument('--factor',
type=float,
default=0.2,
help='the factor of reduce on plateou')
#
parser.add_argument('--pretrained',
dest='SAVED_MODEL',
default=None,
help='path to the pretrained model weights')
parser.add_argument('--no-date',
action='store_true',
help='don\'t append date timestamp to folder')
parser.add_argument('--use_cuda',
default=True,
type=bool,
help='use cuda or not')
parser.add_argument('--use_cudnn',
default=1,
type=int,
help='use cudnn or not')
parser.add_argument('--dtype',
default=torch.cuda.FloatTensor,
choices=[torch.cuda.FloatTensor, torch.FloatTensor],
help='tensor data type ')
# parser.add_argument('--resume',
# default='',
# type=str, help='path to latest checkpoint (default: none)')
parser.add_argument('--uid',
type=str,
default=None,
help='unique id for the training')
parser.add_argument('--force',
action='store_true',
help='force to override the given uid')
args = parser.parse_args()
if args.uid is None:
unique_id = str(numpy.random.randint(0, 100000))
# print("revise the unique id to a random number " + str(unique_id))
args.uid = unique_id
timestamp = datetime.datetime.now().strftime("%a-%b-%d-%H:%M")
save_path = './model_weights/'+args.uid+'-'+timestamp
else:
save_path = './model_weights/'+str(args.uid)
# print("no pth here : " + save_path + "/best"+".pth")
if not os.path.exists(save_path + "/best"+".pth"):
# print("no pth here : " + save_path + "/best" + ".pth")
os.makedirs(save_path, exist_ok=True)
else:
if not args.force:
raise ValueError("please use another uid ")
else:
print("override this uid" + args.uid)
for m in range(1, 10):
if not os.path.exists(save_path+"/log.txt.bk" + str(m)):
shutil.copy(save_path+"/log.txt", save_path+"/log.txt.bk"+str(m))
shutil.copy(save_path+"/args.txt", save_path+"/args.txt.bk"+str(m))
break
parser.add_argument('--save_path',
default=save_path,
help='the output dir of weights')
parser.add_argument('--log',
default=save_path+'/log.txt',
help='the log file in training')
parser.add_argument('--arg',
default=save_path+'/args.txt',
help='the args used')
args = parser.parse_args()
with open(args.log, 'w') as f:
f.close()
with open(args.arg, 'w') as f:
print(args)
print(args, file=f)
f.close()
if args.use_cudnn:
print("cudnn is used")
torch.backends.cudnn.benchmark = True # to speed up the
else:
print("cudnn is not used")
torch.backends.cudnn.benchmark = False # to speed up the