diff --git a/transcribe_me/audio/transcription.py b/transcribe_me/audio/transcription.py index f78cefc..416f8de 100644 --- a/transcribe_me/audio/transcription.py +++ b/transcribe_me/audio/transcription.py @@ -99,42 +99,6 @@ def transcribe_with_assemblyai( # Write additional information to separate files base_name = os.path.splitext(output_path)[0] - # Speaker Diarization - with open(f"{base_name}_speakers.txt", "w", encoding="utf-8") as file: - for utterance in transcript.utterances: - file.write(f"Speaker {utterance.speaker}: {utterance.text}\n") - # Summary - with open(f"{base_name}_summary.txt", "w", encoding="utf-8") as file: - file.write(transcript.summary) - - # Sentiment Analysis - with open(f"{base_name}_sentiment.txt", "w", encoding="utf-8") as file: - for result in transcript.sentiment_analysis: - file.write(f"Text: {result.text}\n") - file.write(f"Sentiment: {result.sentiment}\n") - file.write(f"Confidence: {result.confidence}\n") - file.write(f"Timestamp: {result.start} - {result.end}\n\n") - - # Topic Detection - if transcript.iab_categories: - with open(f"{base_name}_topics.txt", "w", encoding="utf-8") as file: - # Detailed results - file.write("Detailed Topic Results:\n") - for result in transcript.iab_categories.results: - file.write(f"Text: {result.text}\n") - file.write( - f"Timestamp: {result.timestamp.start} - {result.timestamp.end}\n" - ) - for label in result.labels: - file.write(f" {label.label} (Relevance: {label.relevance})\n") - file.write("\n") - - # Summary of all topics - file.write("\nTopic Summary:\n") - for topic, relevance in transcript.iab_categories.summary.items(): - file.write(f"Audio is {relevance * 100:.2f}% relevant to {topic}\n") - - def process_audio_files( input_folder: str, output_folder: str, config: Dict[str, Any] ) -> None: