forked from llorracc/EpiExp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSIR.py
154 lines (119 loc) · 3.38 KB
/
SIR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:light
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.11.2
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import root
# + code_folding=[2, 8]
## these functions translate the continuous-time rates into discrete time at weekly frequency
def b2beta(g,
time_unit_in_years):
beta = 1-np.exp(-g/time_unit_in_years)
return beta
def g2gamma(b,
time_unit_in_years):
gamma = 1-np.exp(-b/time_unit_in_years)
return gamma
# +
## estimates from Shiller and Pound (1989)
types = ['INSRAND','INSRPI','INDRAND','INDRPI']
gs_est = [1.84,1.39,3.72,1.73]
## all median
bs_est = [20.66,7.35,12.74,3.71]
## all median
# + code_folding=[0]
def SIR(beta,
gamma,
T,
x0):
s0,i0,r0 = x0
s_path = [s0]
i_path = [i0]
r_path = [r0]
for t in range(T-1):
s = s_path[t]-beta*s_path[t]*i_path[t]
s_path.append(s)
i = i_path[t]+beta*s_path[t]*i_path[t]-gamma*i_path[t]
i_path.append(i)
r = r_path[t]+gamma*i_path[t]
r_path.append(r)
return s_path,i_path, r_path
# -
## some parameters to testing
beta = 0.1
gamma = 0.03
i0 = 0.01
s0 = 1-i0
r0 = 0.0
x0 = (s0,i0,r0)
T = 204
times = range(T)
# +
### Solve final values/ Steady State fraction
def final_R_eq(r_fraction,
beta,
gamma):
return 1-r_fraction- np.exp(-beta/gamma*r_fraction)
def solve_r_ss(beta,
gamma):
eq = lambda R_SS: final_R_eq(R_SS,
beta,
gamma)
r_ss = root(eq,
x0 =0.6).x
return r_ss
# + code_folding=[]
## plot different simulated paths
if __name__ == "__main__":
## configurations of the plot
lw = 4
lbsize = 15
## plot
fig, axs = plt.subplots(2,2,
figsize=(15, 12),
facecolor='w',
edgecolor='k')
fig.subplots_adjust(hspace = 0.3, wspace=.1)
axs = axs.ravel()
nb = len(types)
nbw1y = 52
for x in range(nb):
g = gs_est[x]
gamma = g2gamma(g,nbw1y)
b = bs_est[x]
beta = b2beta(b,nbw1y)
r_ss = solve_r_ss(beta,gamma)
s,i,r = SIR(beta, # infection rate
gamma, # recovery rate
T,
x0)
title = types[x]+':\n'+r'$\beta={}$'.format(round(beta,2))+'\n'+r'$\gamma ={}$'.format(round(gamma,2))
axs[x].set_title(title,fontsize=lbsize)
axs[x].hlines(r_ss,
0.0,
T,
color='r',
linestyle ='dashed',
lw=lw,
label=r'$R_{+\infty}$')
axs[x].plot(times,s,'-',lw=lw,label='S')
axs[x].plot(times,i,'--',lw=lw,label='I')
axs[x].plot(times,r,'-.',lw=lw,label='R')
axs[x].set_xlim(0.0,T)
axs[0].legend(loc=0,prop={'size': 15})
axs[x].tick_params(axis='x', labelsize=lbsize)
axs[x].tick_params(axis='y', labelsize=lbsize)
plt.savefig("./draft/chapter/figures/sir_simulate.png")
# -
solve_r_ss(0.03,0.08)