-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPrelude.agda
93 lines (69 loc) · 3.23 KB
/
Prelude.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
module OTT.Prelude where
open import Level
renaming (Level to MetaLevel; zero to lzeroₘ; suc to lsucₘ; _⊔_ to _⊔ₘ_) using () public
open import Function public
open import Relation.Binary.PropositionalEquality as P using (_≡_)
renaming (refl to prefl; trans to ptrans; subst to psubst; cong to pcong; cong₂ to pcong₂) public
open import Data.Empty public
open import Data.Nat.Base hiding (_⊔_; _≟_; erase) public
open import Data.Maybe.Base using (Maybe; nothing; just) public
open import Data.Product hiding (,_) renaming (map to pmap) public
open import OTT.Lib.Heteroindexed public
open import OTT.Lib.Decidable public
open import Relation.Nullary
open import Relation.Binary
infix 4 ,_
pattern ,_ y = _ , y
record ⊤ {α} : Set α where
constructor tt
⊤₀ : Set
⊤₀ = ⊤
instance
iprefl : ∀ {α} {A : Set α} {x : A} -> x ≡ x
iprefl = prefl
,-inst : ∀ {α β} {A : Set α} {B : A -> Set β} {{x : A}} {{y : B x}} -> Σ A B
,-inst {{x}} {{y}} = x , y
pright : ∀ {α} {A : Set α} {x y z : A} -> x ≡ y -> x ≡ z -> y ≡ z
pright prefl prefl = prefl
hpcong₂ : ∀ {α β γ} {A : Set α} {B : A -> Set β} {C : Set γ} {x₁ x₂} {y₁ : B x₁} {y₂ : B x₂}
-> (f : ∀ x -> B x -> C) -> (q : x₁ ≡ x₂) -> psubst B q y₁ ≡ y₂ -> f x₁ y₁ ≡ f x₂ y₂
hpcong₂ f prefl prefl = prefl
record Apply {α β} {A : Set α} (B : A -> Set β) x : Set β where
constructor tag
field detag : B x
open Apply public
tag-inj : ∀ {α β} {A : Set α} {B : A -> Set β} {x} {y₁ y₂ : B x}
-> tag {B = B} y₁ ≡ tag y₂ -> y₁ ≡ y₂
tag-inj prefl = prefl
data Match {ι α} {I : Set ι} {i} (A : I -> Set α) (x : A i) : Set (ι ⊔ₘ α) where
matched : ∀ {j} -> (x′ : A j) -> [ A ] x ≅ x′ -> Match A x
match : ∀ {ι α} {I : Set ι} {i} -> (A : I -> Set α) -> (x : A i) -> Match A x
match A x = matched x irefl
data IMatch {ι α β} {I : Set ι} {i} (A : I -> Set α) {x : A i}
(B : ∀ {i} -> A i -> Set β) (y : B x) : Set (ι ⊔ₘ α ⊔ₘ β) where
imatched : ∀ {i} {x : A i} -> (y′ : B x) -> [ A ][ B ] y ≅ y′ -> IMatch A B y
imatch : ∀ {ι α β} {I : Set ι} {i}
-> (A : I -> Set α) {x : A i} -> (B : ∀ {i} -> A i -> Set β) -> (y : B x) -> IMatch A B y
imatch A B y = imatched y iirefl
module _ {α} {A : Set α} where
open import Relation.Nullary.Decidable
open import Data.Maybe
toPropEq : {a b : Maybe A} -> a ≡ b -> Eq _≡_ a b
toPropEq {a = nothing} prefl = nothing
toPropEq {a = just _ } prefl = just prefl
fromPropEq : {a b : Maybe A} -> Eq _≡_ a b -> a ≡ b
fromPropEq (just q) = pcong just q
fromPropEq nothing = prefl
fromDecPropEq : {a b : Maybe A} -> Dec (Eq _≡_ a b) -> Dec (a ≡ b)
fromDecPropEq = map′ fromPropEq toPropEq where
decideMaybe : Decidable (_≡_ {A = A}) -> Decidable (_≡_ {A = Maybe A})
decideMaybe D a b = fromDecPropEq (a ≟ b) where
open DecSetoid (decSetoid (P.decSetoid D))
Enum : ℕ -> Set
Enum 0 = ⊥
Enum 1 = ⊤
Enum (suc n) = Maybe (Enum n)
decEnum : ∀ n -> Decidable (_≡_ {A = Enum n})
decEnum 0 () ()
decEnum 1 tt tt = yes prefl
decEnum (suc (suc n)) e₁ e₂ = decideMaybe (decEnum (suc n)) e₁ e₂