This repository has been archived by the owner on Sep 30, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzerorle.cpp
408 lines (377 loc) · 10.2 KB
/
zerorle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#include <string.h>
#include <mmintrin.h>
#include <emmintrin.h>
#include <xmmintrin.h>
#include <tmmintrin.h>
#include "zerorle.h"
// this lookup table is used for encoding run lengths so that
// the run byte distribution should roughly match the data
// distribution, improving compression.
#pragma warning( push )
#pragma warning( disable : 4245 )
static const BYTE dist_match[]={ 0,0,0,-1,1,-2,2,-3,3,-4,4,-5,5,-6,6,-7,7,-8,8,-9,9,
-10,10,-11,11,-12,12,-13,13,-14,14,-15,15,-16,16,-17,17,-18,18,-19,19,-20,20,
-21,21,-22,22,-23,23,-24,24,-25,25,-26,26,-27,27,-28,28,-29,29,-30,30,-31,31,
-32,32,-33,33,-34,34,-35,35,-36,36,-37,37,-38,38,-39,39,-40,40,-41,41,-42,42,
-43,43,-44,44,-45,45,-46,46,-47,47,-48,48,-49,49,-50,50,-51,51,-52,52,-53,53,
-54,54,-55,55,-56,56,-57,57,-58,58,-59,59,-60,60,-61,61,-62,62,-63,63,-64,64,
-65,65,-66,66,-67,67,-68,68,-69,69,-70,70,-71,71,-72,72,-73,73,-74,74,-75,75,
-76,76,-77,77,-78,78,-79,79,-80,80,-81,81,-82,82,-83,83,-84,84,-85,85,-86,86,
-87,87,-88,88,-89,89,-90,90,-91,91,-92,92,-93,93,-94,94,-95,95,-96,96,-97,97,
-98,98,-99,99,-100,100,-101,101,-102,102,-103,103,-104,104,-105,105,-106,106,
-107,107,-108,108,-109,109,-110,110,-111,111,-112,112,-113,113,-114,114,-115,
115,-116,116,-117,117,-118,118,-119,119,-120,120,-121,121,-122,122,-123,123,
-124,124,-125,125,-126,126,-127,127,-128};
#pragma warning( pop )
extern const unsigned int* dist_rest;
#define dist_match_max 0x80
// this table is used in performing RLE; it is used to look up how
// many leading zeros or non-zeros were found in an eight-byte block
static const unsigned int countlookup[] = {8,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,
0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,
1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,
0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,
0,1,0,2,0,1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,
1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,8};
static const unsigned int lvl3_lookup[] = {8,8,8,8,8,8,8,0,8,8,8,8,8,8,1,0,8,8,8,8,8,
8,8,0,8,8,8,8,2,2,1,0,8,8,8,8,8,8,8,0,8,8,8,8,8,8,1,0,8,8,8,8,8,8,8,0,3,3,3,3,2,2,
1,0,8,8,8,8,8,8,8,0,8,8,8,8,8,8,1,0,8,8,8,8,8,8,8,0,8,8,8,8,2,2,1,0,8,8,8,8,8,8,8,
0,8,8,8,8,8,8,1,0,4,4,4,4,4,4,4,0,3,3,3,3,2,2,1,0,7,7,7,7,7,7,7,0,7,7,7,7,7,7,1,0,
7,7,7,7,7,7,7,0,7,7,7,7,2,2,1,0,7,7,7,7,7,7,7,0,7,7,7,7,7,7,1,0,7,7,7,7,7,7,7,0,3,
3,3,3,2,2,1,0,6,6,6,6,6,6,6,0,6,6,6,6,6,6,1,0,6,6,6,6,6,6,6,0,6,6,6,6,2,2,1,0,5,5,
5,5,5,5,5,0,5,5,5,5,5,5,1,0,4,4,4,4,4,4,4,0,3,3,3,3,2,2,1,0};
// This function encodes zero runs longer than 256 bytes;
// This is rare and takes a variable amount of bytes per level
void Encode_Long_Run(BYTE** l1, BYTE** l3, size_t count)
{
BYTE* lvl1 = l1[0];
BYTE* lvl3 = l3[0];
size_t x = count;
while (x>256)
{
lvl1[0]=0;
lvl1[1]=dist_match_max;
x-=256;
lvl1+=2;
}
lvl1[0]=0;
lvl1[1]=dist_match[x+1];
lvl1+=2;
while (count>258)
{
lvl3[0]=0;
lvl3[1]=0;
lvl3[2]=0;
lvl3[3]=dist_match_max;
count-=258;
lvl3+=4;
}
if ( count == 1)
{
lvl3[0]=0;
++lvl3;
}
else if (count == 2)
{
lvl3[0]=0;
lvl3[1]=0;
lvl3+=2;
}
else
{
lvl3[0]=0;
lvl3[1]=0;
lvl3[2]=0;
lvl3[3]=dist_match[count-1];
lvl3+=4;
}
l1[0]=lvl1;
l3[0]=lvl3;
}
void TestAndRLE_SSE2(BYTE* const __restrict in, BYTE** const __restrict out1, BYTE** const __restrict out3, const size_t length);
/*
This function takes the input data and performs RLE on runs of zeros.
After performing the encoding, the function looks at the length of the
resulting byte sequences, and tries to select the RLE level that gives
the best compression & speed. The possible levels are 0 (no RLE
compression), 1 (each zero is followed by a byte indicating how many
additional zeros follow), and 3 (three sequential zero values are
followed by a byte indicating how many additional zeros follow).
There is also a special case for data in which every byte after the
first is zero, in this case the function will return -1, and only
the first byte needs to be saved.
*/
size_t TestAndRLE(BYTE* const __restrict in, BYTE* const __restrict out1, BYTE* const __restrict out3, const size_t length, short& level)
{
BYTE* lvl1 = out1;
BYTE* lvl3 = out3;
// end marker values to prevent overrunning
in[length]=255;
in[length+1]=0;
in[length+2]=0;
in[length+3]=0;
unsigned int a=0;
TestAndRLE_SSE2(in, &lvl1, &lvl3, length);
unsigned int len1 = (int)(lvl1-out1);
unsigned int len3 = (int)(lvl3-out3);
// check if the data was one long run of zeros
if ( len1 <= (length/256)*2 + 3)
{
a = (in[0]>0);
if ( ((len1 - a)%2)==0 )
{
bool solid = true;
for ( ;a<len1-2;a+=2)
{
if ( out1[a] || out1[a+1]!=128)
{
solid = false;
break;
}
}
if ( solid && out1[len1-2]==0 )
{
level = -1;
return 2;
}
}
}
// Level selection method:
// None typically gives the best compression if level 3 cannot reduce the size
// by at least %1.5. Level 1 typically gives better compression if it is
// significantly smaller than level 3 (98% of level 3) and level 3 is much smaller than
// none (32% of none). For very simple data (level 1 < 10% of none), none typically
// will compress a few bytes less than level 1, but the speed tradeoff isn't
// worth it in my opinion.
// 197/200 = 98.5%
if ( length*197/200 <= len3 )
{
level=0;
return length;
}
if ( len1 < len3*98/100 && len3*100/length <= 32 )
{
level=1;
return len1;
}
level = 3;
return len3;
}
void TestAndRLE_SSE2(BYTE* const __restrict in, BYTE** const __restrict out1, BYTE** const __restrict out3, const size_t length)
{
unsigned int a = 0;
unsigned char * lvl3 = *out3;
const __m128i zero = _mm_setr_epi32(0,0,-1,-1);
// Perform RLE on the data using runs of length 1 and 3 using SSE
while(true)
{
unsigned int step;
do {
// copy bytes until a zero run is found
__m128i s = _mm_loadl_epi64((__m128i*)&in[a]);
_mm_storel_epi64((__m128i*)lvl3,s);
s = _mm_cmpeq_epi8(s,zero);
unsigned int index = _mm_movemask_epi8(s);
step = lvl3_lookup[index];
lvl3+=step;
a+=step;
} while ( step>=6 );
if ( a>=length)
{
break;
}
unsigned int count = 3;
a+=3;
do {
// count the number of zeros in the current run
__m128i s = _mm_loadl_epi64((__m128i*)&in[a]);
s = _mm_cmpeq_epi8(s,zero);
step = _mm_movemask_epi8(s);
step = countlookup[step+1]; // step now equals the number of sequential zeros
a+=step;
count+=step;
} while ( step == 8);
if ( count <= 258 )
{
lvl3[0]=0;
lvl3[1]=0;
lvl3[2]=0;
lvl3[3]=dist_match[count-1];
lvl3+=4;
}
else
{
// encode the run of zeros
while (count>258)
{
lvl3[0]=0;
lvl3[1]=0;
lvl3[2]=0;
lvl3[3]=dist_match_max;
count-=258;
lvl3+=4;
}
lvl3[0]=0;
lvl3[1]=0;
lvl3[2]=0;
lvl3[3]=dist_match[count-1];
lvl3+=(count>=3)?4:count;
}
}
lvl3 -= (a > length);
// if level 3 RLE is > 32% of no RLE (length), then level 1 RLE will not
// be used and does not need to be calculated.
unsigned int len = (int)(lvl3-*out3);
unsigned char * lvl1=*out1;
if (len*100/length <= 32 )
{
a=0;
if ( in[0] == 0 )
{
goto RLE_lvl1_0_start_SSE2;
}
while(true)
{
{
unsigned int step;
do {
// copy non-zero bytes until a zero is found
__m128i s = _mm_loadl_epi64((__m128i*)&in[a]);
_mm_storel_epi64((__m128i*)lvl1,s);
s = _mm_cmpeq_epi8(s,zero);
step = _mm_movemask_epi8(s)&255;
step = countlookup[step]; // step now equals the number of sequential non-zeros
lvl1+=step;
a+=step;
} while (step == 8);
}
if ( a>= length)
{
break;
}
RLE_lvl1_0_start_SSE2:
unsigned int count=0;
{
unsigned int step;
do {
// count the number of zeros in the current run
__m128i s = _mm_loadl_epi64((__m128i*)&in[a]);
s = _mm_cmpeq_epi8(s,zero);
step = _mm_movemask_epi8(s)&255;
step = countlookup[step+1]; // step now equals the number of sequential zeros
a+=step;
count+=step;
} while ( step == 8);
}
// encode the run of zeros
while (count>256)
{
lvl1[0]=0;
lvl1[1]=dist_match_max;
count-=256;
lvl1+=2;
}
lvl1[0]=0;
lvl1[1]=dist_match[count+1];
lvl1+=2;
}
lvl1 -= (a > length);
}
else
{
lvl1 += length;
}
*out1=lvl1;
*out3=lvl3;
}
// This undoes the modified Run Length Encoding on a byte stream.
// The 'level' parameter tells how many 0's must be read before it
// is considered a 'run', either 1, 2, or 3. Once 'level' zeros have
// been read in the byte stream, the following byte tells how many more
// 0 bytes to output. This routine is only used in the rare occurrence
// where RLE compression is better than header + range coding
size_t deRLE(const BYTE* in, BYTE* out, const size_t length, const BYTE level)
{
unsigned int a = 0;
unsigned int b = 0;
memset(out, 0, length);
if( level == 1 )
{
while ( b < length)
{
if ( in[a] ){
out[b++] = in[a++];
}
else
{
b += dist_rest[in[a+1]]+1;
a += 2;
}
}
}
else if ( level == 2 )
{
while ( b < length-1)
{
if ( in[a] ) {
out[b++]=in[a++];
}
else if ( in[a+1] )
{
out[b]=0;
out[b+1]=in[a+1];
b+=2;
a+=2;
}
else
{
b+=dist_rest[in[a+2]]+2;
a+=3;
}
}
if (b < length )
{
out[b]=in[a];
}
}
else if (level==3)
{
while ( b < length-2)
{
if ( in[a] )
{
out[b++]=in[a++];
}
else if ( in[a+1] )
{
out[b]=0;
out[b+1]=in[a+1];
b+=2;
a+=2;
}
else if ( in[a+2] )
{
out[b]=0;
out[b+1]=0;
out[b+2]=in[a+2];
b+=3;
a+=3;
}
else
{
b+=dist_rest[in[a+3]]+3;
a+=4;
}
}
if (b < length )
{
out[b]=in[a];
if (b < length-1 )
{
out[b+1]=in[a+1];
}
}
}
return a;
}