-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathlcs.el
202 lines (183 loc) · 7.17 KB
/
lcs.el
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
;;; lcs.el --- find out the longest common sequence
;; Copyright (c) 2002-2003 by Alex Shinn, All rights reserved.
;; Copyright (c) 2002-2003 by Shiro Kawai, All rights reserved.
;; Copyright (c) 2006, 2012 by Jorgen Schaefer, All rights reserved.
;; Authors: Alex Shinn, Shiro Kawai
;; Maintainer: Jorgen Schaefer <[email protected]>
;; URL: https://github.com/emacs-circe/circe/wiki/lcs
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions
;; are met:
;; 1. Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;; 2. Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;; 3. Neither the name of the authors nor the names of its contributors
;; may be used to endorse or promote products derived from this
;; software without specific prior written permission.
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
;; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
;; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
;; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
;; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
;; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
;; TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;; Commentary:
;; lcs.el is a library for other Emacs Lisp programs not useful by
;; itself.
;; This library provides functions to find the Longest Common Sequence
;; (LCS) of two sequences. This is used to create a unified diff of to
;; two lists. See `lcs-unified-diff' for a useful function to be
;; called.
;; The code is more or less a literal translation of (part of)
;; Gauche's util/lcs.scm module to Emacs Lisp.
;;; Code:
(put 'lcs-for 'lisp-indent-function 4)
(defmacro lcs-for (var from to step &rest body)
"A simple FOR loop macro.
Count VAR from FROM to TO by stepsize STEP. Evaluate BODY in each
iteration."
(let ((sto (make-symbol "to"))
(sstep (make-symbol "step")))
`(let ((,var ,from)
(,sto ,to)
(,sstep ,step))
(while (<= ,var ,sto)
(progn
,@body)
(setq ,var (+ ,var ,sstep))))))
(defun lcs-split-at (lis pos)
"Return a cons cell of the first POS elements of LIS and the rest."
(let ((head nil))
(while (> pos 0)
(setq head (cons (car lis)
head)
pos (- pos 1)
lis (cdr lis)))
(cons (reverse head)
lis)))
(defun lcs-finish (M+N V_l vl V_r vr)
"Finalize the LCS algorithm.
Should be used only by `lcs-with-positions'."
(let ((maxl 0)
(r '()))
(lcs-for i (- M+N) M+N 1
(when (> (funcall vl i)
maxl)
(setq maxl (funcall vl i)
r (funcall vr i))))
(list maxl (reverse r))))
(defun lcs-with-positions (a-ls b-ls &optional equalp)
"Return the longest common subsequence (LCS) of A-LS and B-LS.
EQUALP can be any procedure which returns non-nil when two
elements should be considered equal."
(let* ((A (vconcat a-ls))
(B (vconcat b-ls))
(N (length A))
(M (length B))
(M+N (+ M N))
(V_d (make-vector (+ 1 (* 2 M+N))
0))
(V_r (make-vector (+ 1 (* 2 M+N))
nil))
(V_l (make-vector (+ 1 (* 2 M+N))
0))
(vd (lambda (i &optional x)
(if x
(aset V_d (+ i M+N) x)
(aref V_d (+ i M+N)))))
(vr (lambda (i &optional x)
(if x
(aset V_r (+ i M+N) x)
(aref V_r (+ i M+N)))))
(vl (lambda (i &optional x)
(if x
(aset V_l (+ i M+N) x)
(aref V_l (+ i M+N))))))
(when (not equalp)
(setq equalp 'equal))
(catch 'return
(if (= M+N 0)
(throw 'return '(0 ()))
(lcs-for d 0 M+N 1
(lcs-for k (- d) d 2
(let ((x nil)
(y nil)
(l nil)
(r nil))
(if (or (= k (- d))
(and (not (= k d))
(< (funcall vd (- k 1))
(funcall vd (+ k 1)))))
(setq x (funcall vd (+ k 1))
l (funcall vl (+ k 1))
r (funcall vr (+ k 1)))
(setq x (+ 1 (funcall vd (- k 1)))
l (funcall vl (- k 1))
r (funcall vr (- k 1))))
(setq y (- x k))
(while (and (< x N)
(< y M)
(funcall equalp (aref A x) (aref B y)))
(setq r (cons (list (aref A x) x y)
r)
x (+ x 1)
y (+ y 1)
l (+ l 1)))
(funcall vd k x)
(funcall vr k r)
(funcall vl k l)
(when (and (>= x N)
(>= y M))
(throw 'return(lcs-finish M+N V_l vl V_r vr)))))))
(error "Can't happen"))))
(defun lcs-unified-diff (a b &optional equalp)
"Return a unified diff of the lists A and B.
EQUALP should can be a procedure that returns non-nil when two
elements of A and B should be considered equal. It's `equal' by
default."
(let ((common (cadr (lcs-with-positions a b equalp)))
(a a)
(a-pos 0)
(b b)
(b-pos 0)
(diff '()))
(while common
(let* ((elt (car common))
(a-off (nth 1 elt))
(a-skip (- a-off a-pos))
(b-off (nth 2 elt))
(b-skip (- b-off b-pos))
(a-split (lcs-split-at a a-skip))
(a-head (car a-split))
(a-tail (cdr a-split))
(b-split (lcs-split-at b b-skip))
(b-head (car b-split))
(b-tail (cdr b-split)))
(setq diff (append diff
(mapcar (lambda (a)
`(- ,a))
a-head)
(mapcar (lambda (b)
`(+ ,b))
b-head)
`((! ,(car elt))))
common (cdr common)
a (cdr a-tail)
a-pos (+ a-off 1)
b (cdr b-tail)
b-pos (+ b-off 1))))
(append diff
(mapcar (lambda (a)
`(- ,a))
a)
(mapcar (lambda (b)
`(+ ,b))
b))))
(provide 'lcs)
;;; lcs.el ends here