-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
225 lines (165 loc) · 7.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
This file saves the model after every epoch. For further training of n epochs trained model,
specify the '-e', '--current_epoch' parameters.
If you want to use different data, do not forget to modify the utils.dataset
"""
import os
import time
import torch as t
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from models import networks, losses
from utils import parser, utils, dataset
def main(opt):
# Training config
print(opt)
t.manual_seed(0)
# Parameters
lambda_FM = 10
lambda_P = 10
lambda_2 = opt.lambda_second
nf = 64 # 64
n_blocks = 6 # 6
# Load the networks
if t.cuda.is_available():
device = "cuda"
else:
device = 'cpu'
print(f"Device: {device}")
if opt.segment:
disc = networks.MultiScaleDisc(input_nc=4, ndf=nf).to(device)
gen = networks.Generator(input_nc=6, output_nc=1, ngf=nf, n_blocks=n_blocks, transposed=opt.transposed).to(device)
else:
disc = networks.MultiScaleDisc(input_nc=1, ndf=nf).to(device)
gen = networks.Generator(input_nc=3, output_nc=1, ngf=nf, n_blocks=n_blocks, transposed=opt.transposed).to(device)
if opt.current_epoch != 0:
disc.load_state_dict(t.load(os.path.join(opt.checkpoints_file, f"e_{opt.current_epoch:0>3d}_discriminator.pth")))
gen.load_state_dict(t.load(os.path.join(opt.checkpoints_file, f"e_{opt.current_epoch:0>3d}_generator.pth")))
print(f"- e_{opt.current_epoch:0>3d}_generator.pth was loaded! -")
print(f"- e_{opt.current_epoch:0>3d}_discriminator.pth was loaded! -")
else:
disc.apply(utils.weights_init)
gen.apply(utils.weights_init)
print("- Weights are initialized from scratch -")
# Losses to track
# # Main losses
loss_change_g = []
loss_change_d = []
# # Components
loss_change_fm1 = []
loss_change_fm2 = []
loss_change_d1 = []
loss_change_d2 = []
loss_change_g1 = []
loss_change_g2 = []
loss_change_p = []
# Create optimizers (Notice the lr of discriminator)
optim_g = optim.Adam(gen.parameters(), lr=opt.learning_rate/5, betas=(0.5, 0.999))
optim_d = optim.Adam(disc.parameters(), lr=opt.learning_rate, betas=(0.5, 0.999), weight_decay=0.0001)
# Create Schedulers
# g_scheduler = t.optim.lr_scheduler.LambdaLR(optim_g, utils.lr_lambda)
# d_scheduler = t.optim.lr_scheduler.LambdaLR(optim_d, utils.lr_lambda)
# Create loss functions
loss = losses.GanLoss()
loss_fm = losses.FeatureMatchingLoss()
loss_p = losses.VGGLoss(device) # perceptual loss
# Create dataloader
ds = dataset.CustomDataset(opt.data_dir, is_segment=opt.segment, sf=opt.scale_factor)
dataloader = DataLoader(ds, batch_size=opt.batch_size, shuffle=True, num_workers=2)
# Start to training
print("Training is starting...")
i = 0
for e in range(1 + opt.current_epoch, 1 + opt.training_epoch + opt.current_epoch):
print(f"---- Epoch #{e} ----")
start = time.time()
for data in tqdm(dataloader):
i += 1
rgb = data[0].to(device)
ir = data[1].to(device)
if opt.segment:
segment = data[2].to(device)
condition = t.cat([rgb, segment], dim=1)
ir_ = t.cat([ir, segment], dim=1)
else:
condition = rgb
ir_ = ir
out1, out2 = disc(ir_)
ir_pred = gen(condition)
# # # Updating Discriminator # # #
optim_d.zero_grad()
if opt.segment:
ir_pred_ = t.cat([ir_pred, segment], dim=1)
else:
ir_pred_ = ir_pred
out1_pred, out2_pred = disc(ir_pred_.detach()) # It returns a list [fms... + output]
l_d_pred1, l_d_pred2 = loss(out1_pred[-1], out2_pred[-1], is_real=False)
l_d_real1, l_d_real2 = loss(out1[-1], out2[-1], is_real=True)
l_d_scale1 = l_d_pred1 + l_d_real1
l_d_scale2 = l_d_pred2 + l_d_real2
disc_loss = l_d_scale1 + l_d_scale2 * lambda_2
# Normalize the loss, and track
loss_change_d += [disc_loss.item() / opt.batch_size]
loss_change_d1 += [l_d_scale1.item() / opt.batch_size]
loss_change_d2 += [l_d_scale2.item() / opt.batch_size]
disc_loss.backward()
optim_d.step()
# # # Updating Generator # # #
optim_g.zero_grad()
out1_pred, out2_pred = disc(ir_pred_) # It returns a list [fms... + output]
fm_scale1 = loss_fm(out1_pred[:-1], out1[:-1])
fm_scale2 = loss_fm(out2_pred[:-1], out2[:-1])
fm = fm_scale1 + fm_scale2 * lambda_2
perceptual = loss_p(ir_pred, ir)
loss_change_fm1 += [fm_scale1.item() / opt.batch_size]
loss_change_fm2 += [fm_scale2.item() / opt.batch_size]
loss_change_p += [perceptual.item() / opt.batch_size]
l_g_scale1, l_g_scale2 = loss(out1_pred[-1], out2_pred[-1], is_real=True)
gen_loss = l_g_scale1 + l_g_scale2 * lambda_2 + fm * lambda_FM + perceptual * lambda_P
loss_change_g += [gen_loss.item() / opt.batch_size]
loss_change_g1 += [l_g_scale1.item() / opt.batch_size]
loss_change_g2 += [l_g_scale2.item() / opt.batch_size]
gen_loss.backward()
optim_g.step()
# Save images
if i % opt.img_save_freq == 1:
utils.save_tensor_images(ir_pred, i, opt.results_file, 'pred')
utils.save_tensor_images(ir, i, opt.results_file, 'ir')
utils.save_tensor_images(rgb, i, opt.results_file, 'rgb')
utils.save_tensor_images(segment, i, opt.results_file, 'segment')
print('\nExample images saved')
print("Losses:")
print(f"G: {loss_change_g[-1]:.4f}; D: {loss_change_d[-1]:.4f}")
print(f"G1: {loss_change_g1[-1]:.4f}; G2: {loss_change_g2[-1]:.4f}")
print(f"D1: {loss_change_d1[-1]:.4f}; D2: {loss_change_d2[-1]:.4f}")
print(f"FM1: {loss_change_fm1[-1]:.4f}; FM2: {loss_change_fm2[-1]:.4f}; P: {loss_change_p[-1]:.4f}")
# g_scheduler.step()
# d_scheduler.step()
print(f"Epoch duration: {int((time.time() - start) // 60):5d}m {(time.time() - start) % 60:.1f}s")
if i % opt.model_save_freq == 0:
utils.save_model(disc, gen, e, opt.checkpoints_file)
# End of training
# Main losses are g and d, but I want to save all components separately
utils.save_loss(d=loss_change_d, d1=loss_change_d1, d2=loss_change_d2,
g=loss_change_g, g1=loss_change_g1, g2=loss_change_g2,
fm1=loss_change_fm1, fm2=loss_change_fm2, p=loss_change_p,
path=opt.loss_file, e=e)
utils.save_model(disc, gen, e, opt.checkpoints_file)
utils.show_loss(opt.checkpoints_file)
print("Done!")
if __name__ == '__main__':
args = parser.Parser(__doc__)
opt = args()
print(f"Working directory: {os.getcwd()}")
if not os.path.isdir(opt.checkpoints_file):
os.mkdir(opt.checkpoints_file)
print("checkpoints directory was created")
if not os.path.isdir(opt.results_file):
os.mkdir(opt.results_file)
print("example directory was created")
if not os.path.isdir(opt.loss_file):
os.mkdir(opt.loss_file)
print("tracked_losses directory was created")
if opt.amp:
raise Warning("AMP is not implemented yet")
main(opt)