-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmakerseye_v0.2.py
324 lines (278 loc) · 8.27 KB
/
makerseye_v0.2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#!/usr/bin/python3
#Version 0.2
#Changes: Cropping sleeves, pull from jnet, languages, box of interest
#Should detect cards on a blank background in all orientations
#added invert mode
import cv2
import numpy as np
import pickle
from PIL import Image
import imagehash
import urllib.request
#languages are en, zh-simp
LANG = 'en'
STDEVS = 5
CROP_PX = 0
def click_and_crop(event, x, y, flags, param):
# grab references to the global variables
global refPt, cropping
# if the left mouse button was clicked, record the starting
# (x, y) coordinates and indicate that cropping is being
# performed
if event == cv2.EVENT_LBUTTONDOWN:
refPt = [(x, y)]
cropping = True
# check to see if the left mouse button was released
elif event == cv2.EVENT_LBUTTONUP:
# record the ending (x, y) coordinates and indicate that
# the cropping operation is finished
refPt.append((x, y))
if(refPt[0][0] == refPt[1][0] or refPt[0][1] == refPt[1][1]):
refPt = []
return 0
a = (max(refPt[0][0],refPt[1][0]), max(refPt[0][1],refPt[1][1]))
b = (min(refPt[0][0],refPt[1][0]), min(refPt[0][1],refPt[1][1]))
print(a,b)
refPt = [b, a]
cropping = False
def hamming(a, b):
r = (1 << np.arange(8))[:,None]
return np.count_nonzero((np.bitwise_xor(a,b) & r) != 0)
#LOAD HASHES
f = open("scans.32ihash","rb")
d = pickle.load(f)
f.close()
def identify(img,raw):
#PROCESSING
# thresh = cv2.equalizeHist(img)
# thresh = cv2.adaptiveThreshold(thresh, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 51, 2)
# cv2.imshow("can",thresh)
# contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# contours = sorted(contours, key=lambda x: -cv2.arcLength(x,True))
# hull = cv2.convexHull(contours[0])
blur = cv2.medianBlur(img, 5)
thresh = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY_INV, 11, 7)
kernel = np.ones((3,3))
dilate = cv2.erode(thresh, kernel, iterations=1)
# dilate = cv2.dilate(dilate, kernel, iterations=1)
cv2.imshow("can",dilate)
contours, _ = cv2.findContours(dilate, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if(len(contours) > 0):
hull = cv2.convexHull(np.concatenate(contours))
else:
return 0
#FIT RECTANGLE
epsilon = 0.1*cv2.arcLength(hull,True)
quad = cv2.approxPolyDP(hull,epsilon,True)
#cv2.drawContours(img, cont, -1, (0,0,0), 1)
cv2.drawContours(img, [hull], 0, (0,0,0), 1)
#cv2.drawContours(img, [quad], 0, (0,0,0), 1)
cv2.imshow("do",img)
# cv2.waitKey(0)
if(len(quad) != 4):
return 0
#DETERMINE CORNERS
pts = quad.reshape(4, 2)
rect = np.zeros((4, 2), dtype="float32")
#FIND CORNERS OF BOUNDING RECT
(tl_x,tl_y,w,h) = cv2.boundingRect(pts)
tr_x = tl_x + w
tr_y = tl_y
bl_x = tl_x
bl_y = tl_y + h
br_x = tr_x
br_y = tl_y + h
#FIND TOP LEFT
pyth = []
for i in pts:
pyth.append(np.sqrt((tl_x-i[0])**2 + (tl_y-i[1])**2))
tl = pts[pyth.index(min(pyth))]
pts = np.delete(pts,(np.where(np.all(pts == tl,axis=1))),0)
#BOTTOM RIGHT FURTHEST FROM TOP LEFT
pyth = []
for i in pts:
pyth.append(np.sqrt((tl[0]-i[0])**2 + (tl[1]-i[1])**2))
br = pts[pyth.index(max(pyth))]
pts = np.delete(pts,(np.where(np.all(pts == br,axis=1))),0)
#REST ARE ???
pyth = []
for i in pts:
pyth.append(np.sqrt((tr_x-i[0])**2 + (tr_y-i[1])**2))
pyth_sort = sorted(pyth)
tr = pts[pyth.index(pyth_sort[0])]
bl = pts[pyth.index(pyth_sort[1])]
rect = np.array([tl,tr,br,bl],dtype="float32")
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
maxHeight = max(int(heightA), int(heightB))
#OUTPUT
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype = "float32")
M = cv2.getPerspectiveTransform(rect, dst)
warp_img = cv2.warpPerspective(raw, M, (maxWidth,maxHeight))
if(maxHeight <= 2*CROP_PX or maxWidth <= 2*CROP_PX):
print("SMALL")
return 0
crop_img = warp_img[CROP_PX:maxHeight-CROP_PX,CROP_PX:maxWidth-CROP_PX].copy()
if(maxWidth > maxHeight):
warp_img = cv2.rotate(crop_img,cv2.ROTATE_90_CLOCKWISE).copy()
maxHeight,maxWidth = maxWidth,maxHeight
cv2.imshow("crop",warp_img)
warp_flip_img = cv2.rotate(warp_img,cv2.ROTATE_180).copy()
warp = Image.fromarray(warp_img)
warp_flip = Image.fromarray(warp_flip_img)
#FIND BEST MATCH
key_min = ""
stds = 0
fkey = []
fstd = []
for i in range(0,2):
if(i == 1):
warp = warp_flip.copy()
img_hash = np.packbits(imagehash.phash(warp, hash_size=32).hash.flatten())
keys = []
hams = []
for key, value in d.items():
h = hamming(img_hash,value)
keys.append(key)
hams.append(int(h))
mini = min(hams)
mean = np.mean(hams)
std = np.std(hams)
if(std == 0):
continue
key_min = keys[hams.index(mini)]
fkey.append(key_min)
stds = (mean-mini)/std
fstd.append(stds)
if(len(fstd) == 0):
return 0
if(max(fstd) > STDEVS):
if(fstd[0] > fstd[1]):
key_min = fkey[0]
std = fstd[0]
else:
key_min = fkey[1]
std = fstd[1]
else:
return 0
#if(stds < STDEVS):
# if(i == 1):
# return 0
# continue
#else:
# print(stds)
# break
if(key_min == ""):
return 0
print(std)
return(key_min)
# print(stds,key_min)
# f = cv2.imread("nrdb/"+key_min+".jpg")
cam = cv2.VideoCapture(0)
bak = None
last = None
refPt = []
cropping = False
showBox = True
invert = True
while(True):
#GRAB GREYSCALE IMAGE
cam.grab()
ret_val, raw = cam.read()
img = raw.copy()
grey = cv2.cvtColor(raw,cv2.COLOR_BGR2GRAY)
if(len(refPt) == 2 and cropping == False and showBox == True):
cv2.rectangle(img, refPt[0], refPt[1], (0, 0, 255), 2)
cv2.imshow("img",img)
cv2.setMouseCallback("img", click_and_crop)
# grey = grey[0:480, 50:450]
#SUBTRACT BACKGROUND AND RUN
key = 0
if(bak is not None):
sub = cv2.absdiff(grey,bak)
if(len(refPt) == 2):
sub = sub[refPt[0][1]:refPt[1][1], refPt[0][0]:refPt[1][0]]
#img = img[refPt[0][1]:refPt[1][1], refPt[0][0]:refPt[1][0]]
grey = grey[refPt[0][1]:refPt[1][1], refPt[0][0]:refPt[1][0]]
if(invert):
sub = ~sub
key = identify(sub,grey)
else:
if(len(refPt) == 2):
grey = grey[refPt[0][1]:refPt[1][1], refPt[0][0]:refPt[1][0]]
#img = img[refPt[0][1]:refPt[1][1], refPt[0][0]:refPt[1][0]]
if(invert):
sub = ~grey
key = identify(sub,grey)
#IF DIFFERENT FECTCH FROM NRDB
if(key != 0 and key != last):
print(key)
#languages are en, zh-simp
#req = urllib.request.urlopen('https://netrunnerdb.com/card_image/large/'+key+'.jpg')
url = 'https://www.jinteki.net/img/cards/'+LANG+'/default/'+key+'.png'
print("sending image request for "+url)
try:
req = urllib.request.urlopen(url)
except:
print("...404")
if(LANG != 'en'): #find english version
url = 'https://www.jinteki.net/img/cards/en/default/'+key+'.png'
print("trying for english version at "+url)
try:
req = urllib.request.urlopen(url)
except:
print("...404")
(folder, num) = key.split("/")
if(folder != 'stock'): #find stock in preferred language
url = 'https://www.jinteki.net/img/cards/'+LANG+'/default/stock/'+num+'.png'
print("trying for stock version at "+url)
try:
req = urllib.request.urlopen(url)
except:
print("...404")
continue
else:
continue
else:
(folder, num) = key.split("/")
if(folder != 'stock'): #find stock version
url = 'https://www.jinteki.net/img/cards/'+LANG+'/default/stock/'+num+'.png'
print("trying for stock version at "+url)
try:
req = urllib.request.urlopen(url)
except:
print("...404")
continue
else:
continue
print("...image received")
#should probably check if image is successful
if(LANG != 'en'):
next
#check if missing
#if missing, switch to english
arr = np.asarray(bytearray(req.read()), dtype=np.uint8)
f = cv2.imdecode(arr,-1)
f = cv2.resize(f,(452,632))
cv2.imshow("match",f)
last = key
c = cv2.waitKey(1)
#KEY COMMANDS
if c == 27: # esc to quit
break
elif c == 98: # b to set background
bak = cv2.cvtColor(raw,cv2.COLOR_BGR2GRAY)
elif c == 99: #c to clear background and box
refPt = []
bak = None
elif c == 104: #h to hide box
showBox = not showBox
elif c == 105: #i to invert image
invert = not invert