-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
35 lines (29 loc) · 1.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7'
from shutil import rmtree
from Deepurify.clean_func import cleanMAGs
import numpy as np
if __name__ == "__main__":
input_folder = ""
output_folder = ""
data_names = os.listdir(input_folder)
if os.path.exists(output_folder) is False:
os.mkdir(output_folder)
for data_name in data_names:
cur_input_contigs = os.path.join(input_folder, f"{data_name}.contigs.fasta")
cur_bam = os.path.join(input_folder, f"{data_name}.sorted.bam")
cur_output_folder = os.path.join(output_folder, f"{data_name}")
if os.path.join(cur_output_folder) is False:
os.mkdir(cur_output_folder)
print(f"{len(cur_input_contigs)}, {cur_bam}, {cur_output_folder}")
cleanMAGs(
output_bin_folder_path=cur_output_folder,
batch_size_per_gpu=48,
each_gpu_threads=4,
# setting of contig inference stage
contig_fasta_path=cur_input_contigs,
sorted_bam_file=cur_bam,
gpu_work_ratio=[0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125],
num_process=256,
db_files_path="./GTDB_Taxa_Info/"
)