-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
262 lines (237 loc) · 11.9 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
from tqdm import tqdm
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_together import ChatTogether
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
from langchain_core.rate_limiters import InMemoryRateLimiter
from .completion_llms import *
class APIQuery:
def __init__(self, model,
timeout=30,
temperature=0,
max_tokens=256,
return_logprobs=False,
api='openai',
chat=True,
max_retries=20,
requests_per_second=30,
check_every_n_seconds=0.1,
read_cost=None,
write_cost=None,
**kwargs):
"""
Initializes an instance of the API class.
Args:
model (str): The model to query.
timeout (int, optional): The timeout value in seconds. Defaults to 30.
temperature (int, optional): The temperature value. Defaults to 0.
max_tokens (int, optional): The maximum number of tokens. Defaults to 256.
return_logprobs (bool, optional): Whether to return log probabilities. Defaults to False.
api (str, optional): The API to be used, one of "openai", "together", "huggingface", "gemini", "claude". Defaults to 'openai'.
chat (bool, optional): Whether to enable chat mode. Defaults to True.
max_retries (int, optional): The maximum number of retries. Defaults to 20.
requests_per_second (int, optional): The number of requests per second. Defaults to 30.
check_every_n_seconds (float, optional): The interval for checking rate limits. Defaults to 0.1.
read_cost (float, optional): The cost of read operations. Defaults to None.
write_cost (float, optional): The cost of write operations. Defaults to None.
**kwargs: Additional keyword arguments for the API model.
Returns:
None
"""
self.model = model
self.return_logprobs = return_logprobs
self.temperature = temperature
self.max_tokens = max_tokens
self.kwargs = kwargs
if read_cost is None:
self.read_cost = 1
self.write_cost = 1
else:
self.read_cost = read_cost
self.write_cost = write_cost
self.max_retries = max_retries
self.api = api
self.chat = chat
self.timeout = timeout
self.rate_limiter = InMemoryRateLimiter(requests_per_second=requests_per_second,
check_every_n_seconds=check_every_n_seconds,
max_bucket_size=requests_per_second)
self.initialize_api_model()
def initialize_api_model(self):
"""
Initializes the API model based on the specified API and chat settings.
Raises:
ValueError: If the specified API or chat settings are not supported.
Returns:
None
"""
if self.api == 'openai' and self.chat:
self.api_model = ChatOpenAI(model=self.model, max_retries=self.max_retries,
temperature=self.temperature,
timeout=self.timeout, max_tokens=self.max_tokens,
rate_limiter=self.rate_limiter,
api_key=os.getenv('OPENAI_API_KEY'), seed=0,
stream_usage=True, **self.kwargs)
elif self.api == 'openai' and not self.chat:
self.api_model = OpenAICompletion(model=self.model, temperature=self.temperature,
max_tokens=self.max_tokens,
api_key=os.getenv('OPENAI_API_KEY'), seed=0,
**self.kwargs)
elif self.api == 'anthropic' and self.chat:
self.api_model = ChatAnthropic(model_name=self.model, temperature=self.temperature,
timeout=self.timeout, max_tokens=self.max_tokens,
api_key=os.getenv('ANTHROPIC_API_KEY'),
stream_usage=True, **self.kwargs)
elif self.api == 'anthropic' and not self.chat:
self.api_model = AnthropicLLMCompletion(model_name=self.model, temperature=self.temperature,
max_tokens=self.max_tokens, **self.kwargs)
elif self.api == 'together' and self.chat:
self.api_model = ChatTogether(model=self.model, temperature=self.temperature,
timeout=self.timeout, max_tokens=self.max_tokens,
api_key=os.getenv('TOGETHER_API_KEY'),
**self.kwargs)
elif self.api == 'together' and not self.chat:
self.api_model = TogetherLLMCompletion(model=self.model, temperature=self.temperature,
max_tokens=self.max_tokens, **self.kwargs)
elif self.api == 'google' and self.chat:
self.api_model = ChatGoogleGenerativeAI(model=self.model, temperature=self.temperature,
timeout=self.timeout, max_tokens=self.max_tokens,
api_key=os.getenv('GOOGLE_API_KEY'),
stream_usage=True, **self.kwargs)
else:
raise ValueError(f'API {self.api} not supported or chat {self.chat} not supported')
async def run_queries(self, queries):
"""
Run queries against the API model.
Args:
queries (list): A list of queries to be executed.
If chat is enabled, each query is a list of tuples, where each tuple contains ('system', 'ai', 'human') and the query message.
If chat is disabled, each query is a string.
Returns:
tuple: A tuple containing the outputs of the queries, the detailed cost, and the total cost.
Total cost is a dictionary containing the input tokens, output tokens, and the total cost.
Detailed cost is a list of dictionaries containing the same information for each query.
Raises:
ValueError: If the query type is not supported.
"""
retry_api_model = self.api_model.with_retry(stop_after_attempt=self.max_retries)
if self.chat:
queries_converted = []
for query in queries:
current_query = []
for query_type, query_message in query:
if query_type == 'system':
current_query.append(SystemMessage(content=query_message))
elif query_type == 'ai':
current_query.append(AIMessage(content=query_message))
elif query_type == 'human':
current_query.append(HumanMessage(content=query_message))
else:
raise ValueError(f'Query type {query_type} not supported')
queries_converted.append(current_query)
else:
queries_converted = queries
results = await self._run_with_rate_limiting(retry_api_model.abatch,
queries_converted)
results = self.unify_output_format(results)
cost, detailed_cost = self.get_cost(results)
outputs = [result['content'] for result in results]
if self.return_logprobs:
logprob_info = self.get_logprobs(results)
outputs = [(result['content'], logprob)
for result, logprob in zip(results, logprob_info)]
return outputs, detailed_cost, cost
def unify_output_format(self, results):
"""
Unifies the output format of the given results across all APIs.
Args:
results (list): A list of results.
Returns:
list: A list of unified results.
"""
unified_results = []
for result in results:
if not isinstance(result, dict):
result = dict(result)
if 'generation_info' in result:
result = result['generation_info']
unified_results.append(result)
return unified_results
def get_logprobs(self, results):
"""
Retrieves the log probabilities from the given results.
Parameters:
results (list): A list of results.
Returns:
list: A nested list containing the log probabilities for each result.
Raises:
None
"""
if self.api == 'huggingface':
logprob_info = [
[[(key, val) for key, val in result['logprobs'].items()]] for result in results
]
if self.api == 'together':
logprob_info = []
for result in results:
logprob_info.append((
result['response_metadata']['logprobs']['tokens'],
result['response_metadata']['logprobs']['token_logprobs']
))
logprob_info = [
[[(token, logprob)] for token, logprob in zip(result[0], result[1])]
for result in logprob_info
]
elif self.api == 'openai':
logprob_info = []
for result in results:
result_specific_logprob = []
for token_logprobs in result['response_metadata']['logprobs']['content']:
top_logprobs_token = []
for token in token_logprobs['top_logprobs']:
top_logprobs_token.append((token['token'], token['logprob']))
result_specific_logprob.append(top_logprobs_token)
logprob_info.append(result_specific_logprob)
return logprob_info
async def _run_with_rate_limiting(self, func, queries):
"""
Runs the given function with rate limiting.
Args:
func (callable): The function to be executed.
queries (list): The list of queries to be processed.
Returns:
list: The results of the function execution.
"""
results = []
for i in tqdm(range(0, len(queries), self.rate_limiter.max_bucket_size),
desc='Running queries'):
batch = queries[i:i + self.rate_limiter.max_bucket_size]
while not self.rate_limiter.acquire():
continue
results.extend(await func(batch))
return results
def get_cost(self, results):
"""
Calculates the cost of the given results.
Args:
results (list): A list of results.
Returns:
tuple: A tuple containing the total input tokens, total output tokens, total cost, and detailed cost for each result.
"""
input_tokens = 0
output_tokens = 0
detailed_cost = []
for result in results:
input_tokens += result['usage_metadata']['input_tokens']
output_tokens += result['usage_metadata']['output_tokens']
detailed = result['usage_metadata']
detailed['cost'] = detailed['input_tokens'] * self.read_cost / 10 ** 6
detailed['cost'] += detailed['output_tokens'] * self.write_cost / 10 ** 6
detailed_cost.append(detailed)
return {
'input_tokens': input_tokens,
'output_tokens': output_tokens,
'cost': input_tokens * self.read_cost / 10 ** 6 + output_tokens * self.write_cost / 10 ** 6
}, detailed_cost