-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathpsi.d
1478 lines (1429 loc) · 320 KB
/
psi.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Written in the D programming language
// License: http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0
import std.stdio, std.path, std.array, std.string, std.algorithm, std.conv;
import file=std.file;
import util;
import ast.lexer, ast.parser, ast.expression, ast.declaration, ast.error;
import options, ast.scope_, ast.modules, ast.summarize;
import help, backend;
static this(){ opt.importPath ~= buildPath(dirName(file.thisExePath),"library"); }
int run(string path){
path = getActualPath(path);
auto ext = path.extension;
if(ext !=".psi"){
stderr.writeln(path~": unrecognized extension: "~ext);
return 1;
}
auto err=new FormattingErrorHandler();
auto sc=new TopScope(err);
Expression[] exprs;
if(auto r=importModule(path,err,exprs,sc))
return r;
if(err.nerrors) return 1;
FunctionDef[string] functions;
foreach(expr;exprs){
if(cast(ErrorExp)expr) continue;
if(auto fd=cast(FunctionDef)expr){
functions[fd.name.name]=fd;
}else if(!cast(Declaration)expr&&!cast(DefineExp)expr&&!cast(CommaExp)expr) err.error("top level expression must be declaration",expr.loc);
}
if(opt.summarize.length){
try{
foreach(expr;exprs)
if(auto fd=cast(FunctionDef)expr)
writefln(getSummary(fd,opt.summarize).join(","));
}catch(Exception e){
stderr.writeln("error: ",e.msg);
return 1;
}
return 0;
}
auto be=Backend.create(path);
if(err.nerrors) return 1;
if("main" !in functions){
if(opt.casBench && functions.length>1){
stderr.writeln("cannot extract benchmark: no entry point");
return 1;
}
foreach(expr;exprs){
if(auto fd=cast(FunctionDef)expr){
writeln(fd.name,":");
printResult(be,path,fd,err,false);
}
}
}else printResult(be,path,functions["main"],err,true);
return !!err.nerrors;
}
int main(string[] args){
//import core.memory; GC.disable();
version(TEST) test();
if(args.length) args.popFront();
bool isFormatting(string flag){
import std.traits: EnumMembers;
import std.conv: to;
foreach(m;EnumMembers!Format){
if(m==Format.default_) continue;
if(flag=="--"~to!string(m)) return true;
}
return false;
}
args.sort!((a,b)=>a.startsWith("--")>b.startsWith("--")||a.startsWith("--")&&b.startsWith("--")&&isFormatting(a)&&!isFormatting(b)); // TODO: make better
bool hasInputFile=false;
foreach(x;args){
switch(x){
case "--help": writeln(help.help); return 0;
case "--syntax": writeln(syntax); return 0;
case "--distributions":
writeln(computeDistributionDocString());
return 0;
case "--cdf": opt.cdf=true; break;
case "--plot": opt.plot=true; break;
case "--kill": opt.kill=true; break;
case "--nointegrate": opt.integrationLevel=IntegrationLevel.none; break;
case "--integratedeltas": opt.integrationLevel=IntegrationLevel.deltas; break;
case "--noboundscheck": opt.noBoundsCheck=true; break;
case "--nocheck": opt.noCheck=true; break;
case "--nonormalize": opt.noNormalize=true; break;
case "--trace": opt.trace=true; break;
case "--expectation": opt.expectation=true; break;
case "--casbench": opt.casBench=true; break;
case "--gnuplot": opt.formatting=Format.gnuplot; break;
case "--matlab": opt.formatting=Format.matlab; break;
case "--maple": opt.formatting=Format.maple; break;
case "--mathematica": opt.formatting=Format.mathematica; break;
case "--python": opt.formatting=Format.python; break;
case "--sympy": opt.formatting=Format.sympy; break;
case "--lisp": opt.formatting=Format.lisp; break;
case "--error-json": opt.errorFormat=ErrorFormat.json; break;
case "--raw": opt.outputForm=OutputForm.raw; break;
case "--raw-error": opt.outputForm=OutputForm.rawError; break;
case "--dexpr": opt.dexpr=true; break;
case "--dp": opt.backend=InferenceMethod.dp; break;
case "--simulate": opt.backend=InferenceMethod.simulate; break;
default:
if(x.startsWith("--plot=")){
auto rest=x["--plot=".length..$];
import std.regex;
auto r=regex(r"^\[-?[0-9]+(\.[0-9]+)?:-?[0-9]+(\.[0-9]+)?\]$");
if(match(rest,r)){
opt.plot=true;
opt.plotRange=rest;
continue;
}else{
stderr.writeln("error: plot range needs to be of format [l:r], where l and r are decimal numbers");
return 1;
}
}
if(x.startsWith("--plot-file=")){
opt.plot=true;
opt.plotFile=x["--plot-file=".length..$];
continue;
}
if(x.startsWith("--summarize=")){
auto rest=x["--summarize=".length..$];
import std.regex: regex, match;
auto r=regex(r"^\[(([-a-z])*,)*([-a-z])*,?\]$");
if(match(rest,r)){
rest=rest[1..$-1];
if(rest.endsWith(",")) rest=rest[0..$-1];
opt.summarize=rest.split(',');
}else{
stderr.writeln("error: summary specification needs to be of format [key1,key2,...]");
return 1;
}
continue;
}
if(x.startsWith("--simulate=")){
auto rest=x["--simulate=".length..$];
try{
opt.backend=InferenceMethod.simulate;
opt.numSimulations=to!ulong(rest);
}catch(Exception){
stderr.writeln("error: number of samples needs to be 64-bit unsigned integer");
return 1;
}
continue;
}
hasInputFile=true;
if(auto r=run(x)) return r;
}
}
if(opt.dexpr){
import sym.dparse,sym.dexpr;
foreach(line;stdin.byLineCopy)
writeln(dParse(line.strip).simplify(one).toString(opt.formatting));
}else if(!hasInputFile){
stderr.writeln("error: no input files");
return 1;
}
return 0;
}
version=TEST;
void test(){
import ast.type,sym.dparse,sym.dexpr,sym.integration,sym.summation;
//writeln("(-109561/9·⅟X⁴·X⁴+-900·⅟X²·X⁴+331/6·⅟X²·X⁴+6620·⅟X³·X⁴)".dParse.polyNormalize("X".dVar));
//writeln("[-16200·⅟(-120·⅟X+62/3+662/3·⅟X²)·⅟X²+-219122·⅟(-120·⅟X+62/3+662/3·⅟X²)·⅟X⁴+119160·⅟(-120·⅟X+62/3+662/3·⅟X²)·⅟X³+993·⅟X²=0]".dParse.simplify(one).linearizeConstraints("X".dVar).simplify(one));
//auto x="lim[r→∞](λX.(e^((-⅟(-⅟X+1+⅟X²)·⅟X+⅟X)·r)+1)·[X≠0]·[X≤0]+(e^((-⅟(-⅟X+1+⅟X²)·⅟X+⅟X)·r)·[-⅟(-⅟X+1+⅟X²)·⅟X+⅟X=0]+1)·[-X≤0]·[X≠0])";
//writeln((x~"(1)").dParse.simplify(one));
//writeln((x~"(-1)").dParse.simplify(one));
//writeln((x~"(X)").dParse.simplify(one));
//writeln("lim[r→∞](((-[-2·⅟(-4·⅟X+4+4·⅟X²)·⅟X+-4·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+6·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+⅟X=0]·r·⅟e^(25/8)+-[-2·⅟(-4·⅟X+4+4·⅟X²)·⅟X+-4·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+6·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+⅟X≠0]·e^((-10·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+-5·⅟(-4·⅟X+4+4·⅟X²)·⅟X+15·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+5/2·⅟X)·r+-25/8)·⅟(-10·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+-5·⅟(-4·⅟X+4+4·⅟X²)·⅟X+15·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+5/2·⅟X))·[-4·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+-⅟X²+4·⅟(-4·⅟X+4+4·⅟X²)·⅟X⁴+⅟(-4·⅟X+4+4·⅟X²)·⅟X²=0]·e^(-25/2·⅟(-4·⅟X+4+4·⅟X²)·⅟X+25/4·⅟(-4·⅟X+4+4·⅟X²)+25/4·⅟(-4·⅟X+4+4·⅟X²)·⅟X²)+-(d/dx)⁻¹[e^(-x²)]((-15/2·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+-5/4·⅟X+5/2·⅟(-4·⅟X+4+4·⅟X²)·⅟X+5·⅟(-4·⅟X+4+4·⅟X²)·⅟X³)·⅟√̅-̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅⁴̅+̅-̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅²̅+̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅³̅+̅⅟̅X̅²+r·√̅-̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅⁴̅+̅-̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅²̅+̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅³̅+̅⅟̅X̅²)·[-4·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+-⅟X²+4·⅟(-4·⅟X+4+4·⅟X²)·⅟X⁴+⅟(-4·⅟X+4+4·⅟X²)·⅟X²≠0]·e^(((-25·⅟(-4·⅟X+4+4·⅟X²)·⅟X+75·⅟(-4·⅟X+4+4·⅟X²)·⅟X²)·⅟X+(-300·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+-50·⅟X+100·⅟(-4·⅟X+4+4·⅟X²)·⅟X)·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+-150·⅟(-4·⅟X+4+4·⅟X²)²·⅟X³+100·⅟(-4·⅟X+4+4·⅟X²)²·⅟X⁶+225·⅟(-4·⅟X+4+4·⅟X²)²·⅟X⁴+25/4·⅟X²+25·⅟(-4·⅟X+4+4·⅟X²)²·⅟X²)·⅟(-16·⅟(-4·⅟X+4+4·⅟X²)·⅟X⁴+-4·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+16·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+4·⅟X²)+-25/2·⅟(-4·⅟X+4+4·⅟X²)·⅟X+-25/8+25/4·⅟(-4·⅟X+4+4·⅟X²)+25/4·⅟(-4·⅟X+4+4·⅟X²)·⅟X²)·⅟√̅-̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅⁴̅+̅-̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅²̅+̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅³̅+̅⅟̅X̅²)·[X≠0]·[X≤0]·⅟2^(3/2)·⅟X·⅟π·⅟√̅-̅⅟̅X̅+̅1̅+̅⅟̅X̅²+(([-2·⅟(-4·⅟X+4+4·⅟X²)·⅟X+-4·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+6·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+⅟X=0]·r+[-2·⅟(-4·⅟X+4+4·⅟X²)·⅟X+-4·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+6·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+⅟X≠0]·e^((-10·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+-5·⅟(-4·⅟X+4+4·⅟X²)·⅟X+15·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+5/2·⅟X)·r)·⅟(-10·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+-5·⅟(-4·⅟X+4+4·⅟X²)·⅟X+15·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+5/2·⅟X))·[-4·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+-⅟X²+4·⅟(-4·⅟X+4+4·⅟X²)·⅟X⁴+⅟(-4·⅟X+4+4·⅟X²)·⅟X²=0]·e^(-25/2·⅟(-4·⅟X+4+4·⅟X²)·⅟X+-25/8+25/4·⅟(-4·⅟X+4+4·⅟X²)+25/4·⅟(-4·⅟X+4+4·⅟X²)·⅟X²)+(d/dx)⁻¹[e^(-x²)]((-15/2·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+-5/4·⅟X+5/2·⅟(-4·⅟X+4+4·⅟X²)·⅟X+5·⅟(-4·⅟X+4+4·⅟X²)·⅟X³)·⅟√̅-̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅⁴̅+̅-̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅²̅+̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅³̅+̅⅟̅X̅²+r·√̅-̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅⁴̅+̅-̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅²̅+̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅³̅+̅⅟̅X̅²)·[-4·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+-⅟X²+4·⅟(-4·⅟X+4+4·⅟X²)·⅟X⁴+⅟(-4·⅟X+4+4·⅟X²)·⅟X²≠0]·e^(((-25·⅟(-4·⅟X+4+4·⅟X²)·⅟X+75·⅟(-4·⅟X+4+4·⅟X²)·⅟X²)·⅟X+(-300·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+-50·⅟X+100·⅟(-4·⅟X+4+4·⅟X²)·⅟X)·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+-150·⅟(-4·⅟X+4+4·⅟X²)²·⅟X³+100·⅟(-4·⅟X+4+4·⅟X²)²·⅟X⁶+225·⅟(-4·⅟X+4+4·⅟X²)²·⅟X⁴+25/4·⅟X²+25·⅟(-4·⅟X+4+4·⅟X²)²·⅟X²)·⅟(-16·⅟(-4·⅟X+4+4·⅟X²)·⅟X⁴+-4·⅟(-4·⅟X+4+4·⅟X²)·⅟X²+16·⅟(-4·⅟X+4+4·⅟X²)·⅟X³+4·⅟X²)+-25/2·⅟(-4·⅟X+4+4·⅟X²)·⅟X+-25/8+25/4·⅟(-4·⅟X+4+4·⅟X²)+25/4·⅟(-4·⅟X+4+4·⅟X²)·⅟X²)·⅟√̅-̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅⁴̅+̅-̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅²̅+̅4̅·̅⅟̅(̅-̅4̅·̅⅟̅X̅+̅4̅+̅4̅·̅⅟̅X̅²̅)̅·̅⅟̅X̅³̅+̅⅟̅X̅²)·[-X≤0]·[X≠0]·⅟2^(3/2)·⅟X·⅟π·⅟√̅-̅⅟̅X̅+̅1̅+̅⅟̅X̅²+(d/dx)⁻¹[e^(-x²)](-5/4·⅟√̅3+r·√̅3̅/̅4)·[X=0]·⅟e^(25/24)·⅟π·⅟√̅6)".dParse.simplify(one));
//writeln("[x^4≤y^4]".dParse.simplify("[0≤x]·[0≤y]".dParse.simplify(one)));
//writeln("[x^4≤y^4]".dParse.simplify("[x≤0]·[y≤0]".dParse.simplify(one)));
//writeln("[(x+1)^-(1/2)≤x^-(1/2)]".dParse.simplify(one));
//writeln("[x^(1/2)≤(x+1)^(1/2)]".dParse.simplify(one));
//writeln("[x^-(1/2)≤(x+1)^-(1/2)]".dParse.simplify(one));
//writeln("[x^(1/2)≤(x+1)^(1/2)]".dParse.simplify(one));
//writeln("[x^(-1)≤(x-1)^(-1)]".simplify(one));
//writeln("[x^(-1)≤(x-1)^(-1)]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("[x^(1/2)≤(x+1)^(1/2)]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("[2·a²≤2·b²]".dParse.simplify("[0≤a]·[0≤b]".dParse.simplify(one)));
//writeln("[2·a²≤2·b²]".dParse.simplify("[0≤a]".dParse.simplify(one)));
//writeln("[log(2)≤log(3)]".dParse.simplify(one)); // TODO
//writeln("[e^2≤e^3]".dParse.simplify(one)); // TODO
//writeln("[⌊x⌋≤⌊(2/3)·x⌋]".dParse.simplify(one)); // TODO
//writeln(dMin([cast(DExpr)"a".dVar,"b".dVar,"c".dVar,"d".dVar].setx).simplify(one));
//writeln("∫dξ₁(-90·x_1²·x_2⁵)·[-16+x_1≤0]·[-2+-3·x_1+2·x_2≤0]·[-22+-ξ₁≤0]·[-4+-x_2+7·ξ₁+9·x_1≤0]·[-5+-x_2+4·x_1+7·ξ₁≤0]·[-5·ξ₁+-7+5·x_1≤0]·[-61+-x_2≤0]·[-70+ξ₁≤0]·[-75+x_2≤0]·[-77+-x_1≤0]·[-9+7·ξ₁+x_1+x_2≤0]·[8+x_2+ξ₁≤0]".dParse.simplify(one));
//writeln("[0≤a]·[0≤b]·∫dx [a·x≤c]·[d≤b·x]".dParse.simplify(one));
//writeln("[-16+x_1≤0]·[-2+-3·x_1+2·x_2≤0]·[-4+-x_2+7·x_0+9·x_1≤0]·[-5+-x_2+4·x_1+7·x_0≤0]·[-5·x_0+-7+5·x_1≤0]·[-77+-x_1≤0]·[-9+7·x_0+x_1+x_2≤0]".dParse.simplify(one).getBoundsForVar("x_1".dVar));
//writeln("∫dx_1([-16+x_1≤0]·[-2+-3·x_1+2·x_2≤0]·[-22+-x_0≤0]·[-4+-x_2+7·x_0+9·x_1≤0]·[-5+-x_2+4·x_1+7·x_0≤0]·[-5·x_0+-7+5·x_1≤0]·[-61+-x_2≤0]·[-70+x_0≤0]·[-75+x_2≤0]·[-77+-x_1≤0]·[-9+7·x_0+x_1+x_2≤0]·[8+x_0+x_2≤0])".dParse.simplify(one));
//writeln("∑_i [0≤i<n][i^3+i^2+i+1≠0]".dParse.simplify(one));
//writeln("∑_i [0≤i<10][i=5]".dParse.simplify(one));
//writeln("∑_j ∑_i [0≤i≤n-1]·[0≤j≤m-1]·[i≤x·j]".dParse.simplify((dIsℤ("n".dVar)*dIsℤ("m".dVar)).simplify(one))); // ?
//writeln("[0≤x]·(3^(x^2)+1)·2^-x-[0≤x]3^(x^2)·2^-x".dParse.simplify(one));
//writeln("∑_x[0≤x]·(3^(x^2)+1)·2^-x-∑_x[0≤x]3^(x^2)·2^-x".dParse.simplify(one)); // TODO!
//writeln("∑_x([0≤x]-[100≤x])".dParse.simplify(one)); // TODO!
//writeln("∫dy(-2^y+2^y·[-y≤0]·[y≠0])·(∑_ξ₁[-ξ₁≤0]·δ(ξ₁)[y]·⅟2^ξ₁)".dParse.simplify(one)); // TODO!
//writeln("∫dx[x+y≠0]·(∑_i[-i≤0]·δ(i)[x]·⅟2^i)·(∑_i[-i≤0]·δ(i)[y]·⅟2^i)".dParse.simplify(one));
//writeln("∫dx∫dy[x+y≠0]·∑_i∑_j[0≤x]·[0≤y]·2^-(i+j+2)·δ(i)[x]·δ(j)[y]".dParse.simplify(one));
//writeln("∫dx∫dyδ([x+y≤0])[r]∑_i∑_j[0≤x]·[0≤y]·2^-(i+j+2)δ(i)[x]δ(j)[y]".dParse.simplify(one));
//writeln("(∑_ξ₁(1/2)^ξ₁·(∑_ξ₂(1/2)^ξ₂·[-ξ₂≤0]·[[ξ₁+ξ₂≤0]=0])·[-ξ₁≤0])·1/4".dParse.simplify(one));
//writeln("⌊2·x^5⌋".dParse.simplify(dIsℤ("x".dVar)));
//writeln("⌊[x=1]⌋".dParse.simplify(one));
//writeln("⌈2·x⌉".dParse.simplify(dIsℤ("x".dVar)));
//writeln(dDiscreteDiff(db1,"ξ₀²⁵".dParse.tryGetDiscreteAntiderivative()).simplify(one));
//writeln("ξ₀·log(ξ₀)".dParse.tryGetAntiderivative());
//writeln("∑_i∑_j[1≤i]·[1≤j]·[i≠j]·2^-(i+j)".dParse.simplify(one));
//writeln("∑_i[1≤i]·[i≠j]·2^-i".dParse.simplify(one));
//writeln("∑_ξ₁[ξ₁=ξ₀]".dParse.simplify(one));
//writeln("∑_i[0≤i]·(1/2)^i·(1/2)^i·[-i≤0]·[-⌊i⌋+i=0]".dParse.simplify(one));
//writeln("∑_i[0≤i]·(1/2)^i·∑_j[0≤j]·(1/2)^j·[i=j]".dParse.simplify(one));
//writeln("lim[ξ₁ → -∞]([ξ₁≤0])".dParse.simplify(one));
//writeln("∑_i(1/2)^i·[0≤i]·[i≠10]".dParse.simplify(one));
//writeln("∑_i [-10≤i≤10]·(-1/2)^i".dParse.simplify(one));
//writeln("lim[ξ₁ → ∞]((1/2)^(ξ₁))".dParse.simplify(one));
//writeln("∑_i(1/2)^i·[-10≤i]".dParse.simplify(one));
//writeln("∑_i(1/2)^(i+1)·[0≤i]".dParse.simplify(one));
//writeln("∑_i(1/2)^i·[1≤i]".dParse.simplify(one));
//writeln("∑_i(1/2)^i·[0≤i]".dParse.simplify(one));
//writeln("∑_ξ₁ p@[ξ₁]".dParse.simplify("[∑_ξ₁ p@[ξ₁]=0]".dParse.simplify(one)));
//writeln("[-∑_ξ₁[-p.length+ξ₁≠0]·[-p.length+ξ₁≤0]·[-ξ₁≤0]·p@[ξ₁]+1=0]·[-⌊ξ₀⌋+ξ₀=0]".dParse.simplify(one));
//writeln("∑_i [0≤i]·[i≤10]·p@[i]".dParse.simplify(one));
//writeln("(∑_ξ₁δ(ξ₁)[z])·[z≤1]·[0≤z]".dParse.simplify(one)); // TODO
//writeln("∑_ξ₁[ξ₁≤6]·δ(-1)[-ξ₁+x]".dParse.simplify("[0≤x]".dParse.simplify(one)));
//writeln("(∑_ξ₁[ξ₁≤6]·δ(ξ₁+1)[x])·[0≤x]".dParse.simplify(one));
//writeln("(∑_ξ₁[-1+-length+ξ₁≤0]·[-6+ξ₁≤0]·[-ξ₁+1≤0])".dParse.simplify(one));
//writeln("(-p+1)^n·(∫dξ₁[-ξ₁≤0]·ξ₁^n·⅟e^ξ₁)·(∑_ξ₁[-n+ξ₁≤0]·[-ξ₁≤0]·p^ξ₁·δ(0)[-ξ₀+ξ₁]·⅟(-p+1)^ξ₁·⅟(∫dξ₂[-ξ₂≤0]·ξ₂^(-ξ₁+n)·⅟e^ξ₂)·⅟(∫dξ₂[-ξ₂≤0]·ξ₂^ξ₁·⅟e^ξ₂))".dParse.substitute("p".dVar,one).simplify(one));
//writeln("∑_i [i=j]".dParse.simplify(one));
//writeln("lim[x → -∞]((d/dx)⁻¹[e^(-x²)](x)·x²)".dParse.simplify(one)); // TODO!
//writeln("lim[x → -∞](((d/dx)⁻¹[e^(-x²)](x·√-̅1̅0̅/̅2̅1̅·̅r̅+̅2̅5̅/̅4̅2̅+̅2̅5̅/̅4̅2̅·̅r̅²̅)·[-4·r+5+5·r²≠0]·⅟√-̅1̅0̅/̅2̅1̅·̅r̅+̅2̅5̅/̅4̅2̅+̅2̅5̅/̅4̅2̅·̅r̅²̅+[-4·r+5+5·r²=0]·x)·x+(-(d/dx)⁻¹[e^(-x²)](x·√-̅1̅0̅/̅2̅1̅·̅r̅+̅2̅5̅/̅4̅2̅+̅2̅5̅/̅4̅2̅·̅r̅²̅)·x·√-̅1̅0̅/̅2̅1̅·̅r̅+̅2̅5̅/̅4̅2̅+̅2̅5̅/̅4̅2̅·̅r̅²̅+-1/2·e^(-25/42·r²·x²+-25/42·x²+10/21·r·x²))·[-4·r+5+5·r²≠0]·⅟(-10/21·r+25/42+25/42·r²))".dParse.simplify(one));
//writeln("lim[x → -∞](((d/dx)⁻¹[e^(-x²)](x·√-̅1̅0̅/̅2̅1̅·̅r̅+̅2̅5̅/̅4̅2̅+̅2̅5̅/̅4̅2̅·̅r̅²̅)·[-4·r+5+5·r²≠0]·⅟√-̅1̅0̅/̅2̅1̅·̅r̅+̅2̅5̅/̅4̅2̅+̅2̅5̅/̅4̅2̅·̅r̅²̅+[-4·r+5+5·r²=0]·x)·x+(-(d/dx)⁻¹[e^(-x²)](x·√-̅1̅0̅/̅2̅1̅·̅r̅+̅2̅5̅/̅4̅2̅+̅2̅5̅/̅4̅2̅·̅r̅²̅)·x·√-̅1̅0̅/̅2̅1̅·̅r̅+̅2̅5̅/̅4̅2̅+̅2̅5̅/̅4̅2̅·̅r̅²̅+-1/2·e^(-25/42·r²·x²+-25/42·x²+10/21·r·x²))·[-4·r+5+5·r²≠0]·⅟(-10/21·r+25/42+25/42·r²)+-1/2·[-4·r+5+5·r²=0]·x²)".dParse.simplify(one)); // TODO!
//writeln("e^(-25/42·r²·ξ₀²+-25/42·ξ₀²+10/21·r·ξ₀²)·ξ₀".dParse.simplify(one).tryGetAntiderivative().simplify(one));
//writeln("δ(val(([-1+ξ₁≤0]·ξ₁+[-ξ₁+1≠0]·[-ξ₁+1≤0])·[-ξ₁≤0]))[x]".dParse.simplify(one));
//writeln("[π^(1/2)≤(d/dx)⁻¹[e^(-x²)](x)]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("[(d/dx)⁻¹[e^(-x²)](r·⅟√2̅)+-√π̅≤0]·[(d/dx)⁻¹[e^(-x²)](r·⅟√2̅)·⅟√π̅+-1≤0]·[-(d/dx)⁻¹[e^(-x²)](r·⅟√2̅)+√π̅≠0]·[-(d/dx)⁻¹[e^(-x²)](r·⅟√2̅)·⅟√π̅≤0]".dParse.simplify(one));
//writeln("lim[x→ ∞](d/dx)⁻¹[e^(-x²)]⁻¹(π^(1/2)-1/x)".dParse.simplify(one));
//writeln("[(d/dx)⁻¹[e^(-x²)]⁻¹(x)≤10]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("[(d/dx)⁻¹[e^(-x²)]⁻¹(x)≤0]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("[(d/dx)⁻¹[e^(-x²)](x)≤π^(1/2)/2]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("[(d/dx)⁻¹[e^(-x²)](x)≤0]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("[(d/dx)⁻¹[e^(-x²)](x)≤π^(1/2)-1/100]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("[(d/dx)⁻¹[e^(-x²)](x)≤π^(1/2)/2]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("∫dx e^(1/2·x²)·δ(0)[-(d/dx)⁻¹[e^(-x²)]⁻¹(r·√π̅)·√2̅+x]·√2̅·√π̅".dParse.simplify(one));
//writeln("(∫dξ₁δ(0)[(d/dx)⁻¹[e^(-x²)](ξ₁·⅟√2̅)·⅟√π̅+-r]·⅟e^(1/2·ξ₁²))·⅟√2̅·⅟√π̅".dParse.simplify(one));
//writeln("δ(0)[(d/dx)⁻¹[e^(-x²)](x)-y]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("δ(0)[(d/dx)⁻¹[e^(-x²)]⁻¹(x)-y]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("d/dx[(d/dx)⁻¹[e^(-x²)]⁻¹(f(x))]".dParse.simplify(one));
//writeln("d/dx[(d/dx)⁻¹[e^(-x²)]⁻¹(f(x))](x)".dParse.simplify(one));
//writeln("(d/dx)⁻¹[e^(-x²)]⁻¹((d/dx)⁻¹[e^(-x²)](f(x)))".dParse.simplify(one));
//writeln("(d/dx)⁻¹[e^(-x²)]((d/dx)⁻¹[e^(-x²)]⁻¹(f(x)))".dParse.simplify(one));
//writeln(dDiff("x".dVar,"(d/dx)⁻¹[e^(-x²)]⁻¹(f(x))".dParse).simplify(one));
//writeln("∫dx δ(0)[(d/dx)⁻¹[e^(-x²)](x·⅟√2̅)+-r₁]".dParse.simplify(one));
//writeln(dGaussInt("x".dVar));
//writeln(dDiff("x".dVar,"(d/dx)⁻¹[e^(-x²)](2^(1/2)·x)".dParse.simplify(one)));
//writeln("δ(x^2)[y]".dParse.linearizeConstraints("x".dVar).simplify(one));
/+import std.random;
Queue!int q;
int cur=0,cur2=0;
foreach(i;0..1000){
if(!q.length||uniform!"[]"(0,5)){
writeln("pushing: ",++cur);
q.push(cur);
}else{
int x=q.pop();
writeln("popping: ",x);
assert(x==++cur2);
}
}+/
//writeln("∫dy[0≤y≤1]·[((-12·y+6)·⅟(-3·y+2)+-3)·⅟((-12+24·y)·⅟(-3·y+2)+(-36·y+36·y²+9)·⅟(-3·y+2)²+4)+2·⅟((-3+6·y)·⅟(-3·y+2)+2)≠0]".dParse.simplify(one));
//writeln("([((-12·y+6)·⅟(-3·y+2)+-3)·⅟((-3+6·y)·⅟(-3·y+2)+2)²+2·⅟((-3+6·y)·⅟(-3·y+2)+2)≠0]·[((-12·y+6)·⅟(-3·y+2)+-3)·⅟((-3+6·y)·⅟(-3·y+2)+2)²+2·⅟((-3+6·y)·⅟(-3·y+2)+2)≤0]·⅟(((-6+12·y)·⅟(-3·y+2)+3)·⅟((-3+6·y)·⅟(-3·y+2)+2)²+-2·⅟((-3+6·y)·⅟(-3·y+2)+2))+[((-6+12·y)·⅟(-3·y+2)+3)·⅟((-3+6·y)·⅟(-3·y+2)+2)²+-2·⅟((-3+6·y)·⅟(-3·y+2)+2)≤0]·⅟(((-12·y+6)·⅟(-3·y+2)+-3)·⅟((-3+6·y)·⅟(-3·y+2)+2)²+2·⅟((-3+6·y)·⅟(-3·y+2)+2)))·[(-1+2·y)·⅟(-3·y+2)+-1≤0]·[-7·y+2+6·y²≤0]·[-y+2/3≠0]".dParse.simplify(one));
//writeln("δ(0)[(1+2·ξ₀)·⅟(2+3·ξ₀)+-y]".dParse.linearizeConstraints(dDeBruijnVar(1)));
//writeln("[((-12·ξ₀+6)·⅟(-3·ξ₀+2)+-3)·⅟((-3+6·ξ₀)·⅟(-3·ξ₀+2)+2)²+2·⅟((-3+6·ξ₀)·⅟(-3·ξ₀+2)+2)≤0]".dParse.simplify(one));
//gnuplot("∫dx [0≤x≤1]·δ(y)[(2*x+1)/(3*x+2)]".dParse.simplify(one),["y".dVar].setx,"label","[0.6:0.7]");
//writeln("1/(3·x+2)²".dParse);
//writeln("[-18·x²·⅟(12·x+4+9·x²)+-21·x·⅟(12·x+4+9·x²)+-6·⅟(12·x+4+9·x²)+2=0]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("δ(0)[(1+2·x)·⅟(2+3·x)+-y]".dParse.linearizeConstraints("x".dVar).simplify(one)); // TODO: split negative exponents of powers higher than 1
//writeln("a/(x+1)+b/(x+2)+c/(x+3)+d/(x+1)+e/(x+2)+f/(x+3)".dParse.simplify(one).splitCommonDenominator());
//writeln("[(2*x+1)/(3*x+2)≤y]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("e^(__r₁₃·centers@[[-i+1=0]])".dParse.simplify(one));
//writeln("∑_x[x=1.000]".dParse.simplify(one));
//writeln("e^(log(x)+log(y))".dParse.simplify(one));
//writeln("[a^b≤0]".dParse.simplify(one));
//writeln("[a^(-1/2-b^2)≠0]".dParse.simplify(one));
//writeln("[e^r≤0]".dParse.simplify(one));
//writeln("[x²·y²=0]".dParse.simplify(one));
//writeln("lim[ξ₁→ -∞] ξ₁²·(d/dx)⁻¹[e^(-x²)](ξ₁·⅟√n̅u̅)".dParse.simplify("[nu≥0]".dParse.simplify(one)));
//dw("lim[p→ ∞] (-1/4·(1/p)²+1/2·(1/p))·[-1+(1/p)≤0]·[-(1/p)²+4·(1/p)≠0]·[-(1/p)≤0]·⅟(-1/4·(1/p)²+(1/p))".dParse.simplify(one)); // TODO
//dw("∫dξ₁[-ξ₁≤0]·ξ₁·⅟e^(13·ξ₁²·⅟120)".dParse.simplify(one));
//dw("δ(0)[x-y²]".dParse.linearizeConstraints("y".dVar).simplify(one));
/+import std.range, std.algorithm; // TODO: make this fast
enum n=100;
DExpr e=dApply("f".dVar,dTuple(iota(0,n).map!(i=>cast(DExpr)dVar("x"~lowNum(i))).array));
foreach(i;0..n){
e=dInt(dVar("x"~lowNum(i)),e);
}
dw(e.simplify(one));+/
//writeln("∫dξ₁∫dξ₂(1/2·⅟e^(1/4·ξ₂²)·⅟√π̅)·(1/2·⅟e^(1/4·ξ₁²)·⅟√π̅)·([ξ₁≠0]·[ξ₁≤0]·[ξ₂≠0]·[ξ₂≤0]+[ξ₂≠0]·[ξ₂≤0])".dParse.simplify(one));
/*DExpr r=zero;
foreach(i;0..4){
//r = r + dEqZ(dApply("f".dVar,i.dℚ));
r = r + dLe("x".dVar,i.dℚ);
}
dw((dE^^r).simplify(one));*/
//writeln("[x=0]".dParse.simplify("[x≤-1]".dParse.simplify(one)));
//writeln("[x≤4]·[5≤x]".dParse.simplify(one));
//writeln("[x≤4]·[x≤3]".dParse.simplify(one));
//writeln("∫dy∫dx f[x,y]·δ[z-x/y]".dParse.simplify(one).toString(Format.mathematica));
//writeln("λx.f(x)".dParse.substitute("f".dVar,"λx.x".dParse).simplify(one));
//writeln("Λx.f[x]".dParse.substitute("f".dVar,"Λx.δ[x]".dParse).simplify(one));
//writeln("δ___r₁[λξ₁. (∑_ξ₂(1/2)^(1+ξ₂)·[-ξ₂≤0]·δ_ξ₁[val(ξ₂)])·⅟(∑_ξ₂(1/2)^(1+ξ₂)·[-ξ₂≤0])]·(∫dξ₁∫dξ₂[∫dξ₃(case(ξ₃){ val(ξ₄) ⇒ 1;⊥ ⇒ 0})·__r₁(ξ₃)≠0]·δ[(∫dξ₃(case(ξ₃){ val(ξ₄) ⇒ ξ₄;⊥ ⇒ 0})·__r₁(ξ₃))·⅟(∫dξ₃(case(ξ₃){ val(ξ₄) ⇒ 1;⊥ ⇒ 0})·__r₁(ξ₃))+-ξ₂]·δ_ξ₁[val(ξ₂)]·(case(ξ₁){ val(ξ₂) ⇒ δ___r₂[ξ₂];⊥ ⇒ 0}))".dParse.simplify(one));
//writeln("(∫dξ₁(δ_ξ₁[val(λξ₂. (∑_ξ₃(1/2)^(1+ξ₃)·[-ξ₃≤0]·δ_ξ₂[val(ξ₃)])·⅟(∑_ξ₃(1/2)^(1+ξ₃)·[-ξ₃≤0]))])·(case(ξ₁){ val(ξ₂) ⇒ δ___r₁[ξ₂];⊥ ⇒ 0}))·(∫dξ₁∫dξ₂[∫dξ₃(case(ξ₃){ val(ξ₄) ⇒ 1;⊥ ⇒ 0})·__r₁(ξ₃)≠0]·δ[(∫dξ₃(case(ξ₃){ val(ξ₄) ⇒ ξ₄;⊥ ⇒ 0})·__r₁(ξ₃))·⅟(∫dξ₃(case(ξ₃){ val(ξ₄) ⇒ 1;⊥ ⇒ 0})·__r₁(ξ₃))+-ξ₂]·δ_ξ₁[val(ξ₂)]·(case(ξ₁){ val(ξ₂) ⇒ δ___r₂[ξ₂];⊥ ⇒ 0}))".dParse.simplify(one));
//writeln("δ[y-2^x]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("(∫dξ₁[-log(10)+log(ξ₁)≤0]·[-ξ₁+1≤0]·[ξ₁≠0]·⅟ξ₁)".dParse.simplify(one));
//writeln("∫dr₁[-log(10)+log(r₁)≤0]·[-r₁+1≤0]·[r₁≠0]·⅟log(10)·⅟r₁".dParse.simplify(one));
//writeln("[-1/e^x≤0]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("[-log(10)+log(x)≤0]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("(-[⅟e^r₁≤0]·e^(-10+r₁)+[-⅟e^r₁≤0]·e^(-10+r₁))·[-e^r₁≤0]·[-e¹⁰+e^r₁≤0]".dParse.linearizeConstraints("r₁".dVar).simplify(one));
//writeln("∫dx[-e¹⁰+x≤0]·[-x≤0]·[x≠0]·δ[-r₁+log(x)]·⅟e¹⁰".dParse.simplify(one));
//writeln("[-e¹⁰+x≤0]·[-x≤0]·[x≠0]·δ[-r₁+log(x)]·⅟e¹⁰".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("δ[x-log(y)]".dParse.linearizeConstraints("y".dVar).simplify(one));
//writeln("δ[x-e^y]".dParse.linearizeConstraints("y".dVar).simplify(one));
//writeln("∫dξ₁ δ[(-1/2+-ξ₁²·⅟2+ξ₁)·⅟(-ξ₁+1)+r₁]".dParse.simplify(one));
//writeln("1/-x".dParse.simplify(one));
//writeln("(-1)^(1/2)*(-x)^(1/2)".dParse.simplify(one));
//writeln("(1/x)^(1/2)".dParse.simplify(one));
//writeln("(2/x)^(1/2)".dParse.simplify(one));
//writeln("(-2)^(1/2)/(-x)^(1/2)".dParse.simplify(one));
//writeln(("-1/(-2)^(1/2)".dParse.simplify(one)*"(-x)^(1/2)".dParse.simplify(one)).simplify(one));
//writeln(tryGetAntiderivative("[-k+-ξ₀≤0]·[k+ξ₀≠0]·k".dParse.simplify(one)).simplify(one));
//writeln(tryGetAntiderivative("[-ξ₋₁+-ξ₀≤0]·[ξ₋₁+ξ₀≠0]·ξ₋₁".dParse.simplify(one)).simplify(one).substitute(db2,dVar("k")).simplify(one));
//writeln("∫dξ₁ [0≤ξ₁]·[ξ₁≤1]·1/(ξ₁+k)*ξ₁".dParse.simplify(one).toString(Format.mathematica));
//writeln("∫dξ₁ [0≤ξ₁]·[ξ₁≤1]·1/(ξ₁+ξ₀)*ξ₁".dParse.simplify(one).toString(Format.mathematica));
//writeln("∫dxi0 [0≤xi0]·[xi0≤1]·1/(-1/2*xi0+-1/2*xim1+1)*xi0".dParse.simplify(one));
//writeln("∫dxi0 [0≤xi0]·[xi0≤1] 1/(-21/100*xim1+-7/10*xi0+91/100)*xi0".dParse.simplify(one));
//writeln("∫dxi0 [0≤xi0]·[xi0≤1]·1/(21/100*xim1+7/10*xi0)*xi0".dParse.simplify(one));
//writeln(tryGetAntiderivative("log(r₁+ξ₀)·ξ₀".dParse.simplify(one)));
//writeln(tryGetAntiderivative("ξ₀²·⅟(ξ₀+r₁))".dParse.simplify(one)));
//writeln("(∫dξ₁(-2·ξ₁+1+ξ₁²)·[-1+ξ₁≤0]·[-ξ₁≤0]·ξ₁·⅟(-21/100·ξ₁+21/100+7/10·r₁))".dParse.simplify(one));
//writeln("∫dx log(-x)·x·[-1≤x]·[x≤0]".dParse.simplify(one));
//writeln("-[-ξ₀≤0]·[ξ₀≠0]·τ(0,)·⅟2+-[ξ₀≤0]·σ+-ξ₀²·⅟2+-σ+[-ξ₀≤0]·[ξ₀≠0]·log(ξ₀)·ξ₀²·⅟2+[-ξ₀≤0]·ξ₀²·⅟4+[ξ₀=0]·σ·⅟2+[ξ₀≠0]·[ξ₀≤0]·log(-ξ₀)·ξ₀²+[ξ₀≠0]·[ξ₀≤0]·τ(0,)·⅟2".dParse.solveFor("σ".dVar));
//writeln(tryGetAntiderivative("log(-ξ₀)·ξ₀".dParse.simplify(one)));
//writeln(tryGetAntiderivative("[ξ₀≤0]·log(-ξ₀)·ξ₀".dParse.simplify(one)));
//writeln(tryGetAntiderivative("log(-ξ₀)·ξ₀".dParse.simplify(one)).simplify("[ξ₀<0]".dParse.simplify(one)));
//writeln(tryGetAntiderivative("ξ₀·log(-ξ₀)".dParse).simplify("[ξ₀<0]".dParse.simplify(one)).substitute(db1);
//writeln(dDiff(db1,tryGetAntiderivative("log(-ξ₀)".dParse).simplify("[ξ₀<0]".dParse)));
//writeln(dIntSmp("x".dVar,"x*log(-x)·[-1≤x]·[x≤0]".dParse,one).toString(Format.matlab));
//writeln(dIntSmp("x".dVar,"(x+1)*log(x)*x·[0≤x]·[x≤1]".dParse,one).toString(Format.matlab));
//writeln(dIntSmp("x".dVar,"(-1/2*x+1/2)*log(1/2+1/2*x)*x·[0≤x]·[x≤1]".dParse,one).toString(Format.matlab));
//writeln(dIntSmp("x".dVar,"(-1/2*x²+1/2*x)*log(1/2+1/2*x)·[0≤x]·[x≤1]".dParse,one).toString(Format.matlab));
//auto r="∫dξ₁∫dξ₂((-21/100·ξ₁+21/200+21/200·ξ₁²)·(-ξ₂+1)·[-1+ξ₁≤0]·[-1+ξ₂≤0]·[-ξ₁≤0]·[-ξ₂≤0]·ξ₁·⅟(21/100·ξ₁+7/10·ξ₂)+(-21/200·ξ₂+21/200)·(-ξ₁+1)·[-1+ξ₁≤0]·[-1+ξ₂≤0]·[-ξ₁≤0]·[-ξ₂≤0]·ξ₁²·⅟(21/100·ξ₁+7/10·ξ₂))".dParse.simplify(one);
//writeln(r.toString(Format.matlab));
/+auto fun="((-21/100·x+21/200+21/200·x²)·(-y+1)·[-1+x≤0]·[-1+y≤0]·[-x≤0]·[-y≤0]·x·⅟(21/100·x+7/10·y)+(-21/200·y+21/200)·(-x+1)·[-1+x≤0]·[-1+y≤0]·[-x≤0]·[-y≤0]·x²·⅟(21/100·x+7/10·y))".dParse.simplify(one);
writeln(fun.toString(Format.matlab));+/
/+auto fun="λξ₁. λξ₂. ∫dξ₃∫dξ₄((-21/100·ξ₃+21/200+21/200·ξ₃²)·(-ξ₄+1)·[-1+ξ₃≤0]·[-1+ξ₄≤0]·[-ξ₃≤0]·[-ξ₄≤0]·ξ₃·⅟(21/100·ξ₃+7/10·ξ₄)+(-21/200·ξ₄+21/200)·(-ξ₃+1)·[-1+ξ₃≤0]·[-1+ξ₄≤0]·[-ξ₃≤0]·[-ξ₄≤0]·ξ₃²·⅟(21/100·ξ₃+7/10·ξ₄))·δ_ξ₂[(ξ₄,ξ₃)]".dParse.simplify(one);
void computeWeight(){
auto app=dDistApply(dApply(fun,dTuple([])),db1).simplify(one);
writeln(app);
writeln(dIntSmp(app,one).toString(Format.matlab));
}
//computeWeight();
void demonstrate(){
import distrib;
opt.noCheck=true;
auto idist=new Distribution();
auto f=idist.declareVar("`f");
idist.addArgs([f],false,null);
auto fdist=Distribution.fromDExpr(f,0,true,["`val".dVar],false,[tupleTy([ℝ,ℝ])]);
fdist.renormalize();
auto r=idist.declareVar("`dist");
idist.initialize(r,dApply(fdist.toDExpr(),dTuple([])),contextTy());
idist.orderFreeVars([r],false);
auto infer=idist.toDExpr().simplify(one);
writeln(infer);
writeln(fun);
auto res=dApply(infer,fun).simplify(one);
writeln(res);
//auto applied = dApply("λξ₁. λξ₂. (∫dξ₃∫dξ₄((-21/100·ξ₃+21/200+21/200·ξ₃²)·(-ξ₄+1)·[-1+ξ₃≤0]·[-1+ξ₄≤0]·[-ξ₃≤0]·[-ξ₄≤0]·ξ₃·⅟(21/100·ξ₃+7/10·ξ₄)+(-21/200·ξ₄+21/200)·(-ξ₃+1)·[-1+ξ₃≤0]·[-1+ξ₄≤0]·[-ξ₃≤0]·[-ξ₄≤0]·ξ₃²·⅟(21/100·ξ₃+7/10·ξ₄))·δ_ξ₂[(ξ₄,ξ₃)])·⅟(-13/400·log(21)+-25471121/324000·log(100)+-454397311/6480000+-8095/162·log(7)+25481651/324000·log(91)+8095/162·log(10))".dParse,one).simplify(one);
auto applied=dIntSmp(db1*dDistApply(res,db1),one);
auto ret=dDistApply(applied,dTuple(["a".dVar,"b".dVar])).simplify(one);
writeln(ret);
gnuplot(ret,cast(SetX!DNVar)ret.freeVars.setx,"foo","[-10:10]");
}
demonstrate();+/
//auto e="∫dξ₁((-21/200·r₁+21/200)·(-2·r₂+1+r₂²)·[-1+r₁≤0]·[-1+r₂≤0]·[-r₁≤0]·[-r₂≤0]·r₂·⅟((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·r₂+(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·r₁)+(-21/200·r₁+21/200)·(-r₂+1)·[-1+r₁≤0]·[-1+r₂≤0]·[-r₁≤0]·[-r₂≤0]·r₂²·⅟((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·r₂+(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·r₁))·δ_ξ₁[λξ₂. (∫dξ₃∫dξ₄((-21/200·ξ₄+21/200)·(-2·ξ₃+1+ξ₃²)·[-1+ξ₃≤0]·[-1+ξ₄≤0]·[-ξ₃≤0]·[-ξ₄≤0]·ξ₃·⅟(21/100·ξ₃+7/10·ξ₄)+(-21/200·ξ₄+21/200)·(-ξ₃+1)·[-1+ξ₃≤0]·[-1+ξ₄≤0]·[-ξ₃≤0]·[-ξ₄≤0]·ξ₃²·⅟(21/100·ξ₃+7/10·ξ₄))·δ_ξ₂[(ξ₄,ξ₃)])·⅟(-13/400·log(21)+-195536993/3240000+-3016507/40500·log(100)+-8095/162·log(7)+12071293/162000·log(91)+8095/162·log(10))]".dParse.simplify(one);
//gnuplot(e,cast(SetX!DNVar)e.freeVars.setx,"foo","[-10:10]");
//writeln("[(-log(10)+-log(7)²)·⅟(-log(10)+-log(7))+(log(10)·log(7))·⅟(log(10)+log(7))≠0]".dParse.simplify(one));
//writeln("log((log(10)+log(7))·ξ₀+1)·ξ₀".dParse.tryGetAntiderivative);
//writeln("((-⅟(2·log(10)·log(7)+log(10)²+log(7)²)+ξ₀·⅟(-log(10)+-log(7)))·([(-log(10)+-log(7))·ξ₀+-1≠0]·[(-log(10)+-log(7))·ξ₀+-1≤0]·log((log(10)+log(7))·ξ₀+1)+[(log(10)+log(7))·ξ₀+1≠0]·[(log(10)+log(7))·ξ₀+1≤0]·log((-log(10)+-log(7))·ξ₀+-1))·[-log(10)+-log(7)≤0]+-[-log(10)+-log(7)≤0]·ξ₀·⅟(-log(10)+-log(7)))·[-ξ₀+-⅟(log(10)+log(7))≤0]·[log(10)+log(7)≠0]+(([(-log(10)+-log(7))·ξ₀+-1≠0]·[(-log(10)+-log(7))·ξ₀+-1≤0]·log((log(10)+log(7))·ξ₀+1)+[(log(10)+log(7))·ξ₀+1≠0]·[(log(10)+log(7))·ξ₀+1≤0]·log((-log(10)+-log(7))·ξ₀+-1))·(ξ₀·⅟(-log(10)+-log(7))+⅟(-2·log(10)·log(7)+-log(10)²+-log(7)²))+-ξ₀·⅟(-log(10)+-log(7)))·[-ξ₀+⅟(-log(10)+-log(7))≤0]·[log(10)+log(7)≠0]·[log(10)+log(7)≤0]+(([(-log(10)+-log(7))·ξ₀+-1≠0]·[(-log(10)+-log(7))·ξ₀+-1≤0]·log((log(10)+log(7))·ξ₀+1)+[(log(10)+log(7))·ξ₀+1≠0]·[(log(10)+log(7))·ξ₀+1≤0]·log((-log(10)+-log(7))·ξ₀+-1))·(ξ₀·⅟(-log(10)+-log(7))+⅟(-2·log(10)·log(7)+-log(10)²+-log(7)²))+-ξ₀·⅟(-log(10)+-log(7))+⅟(2·log(10)·log(7)+log(10)²+log(7)²))·[-log(10)+-log(7)≤0]·[-⅟(-log(10)+-log(7))+ξ₀≤0]·[log(10)+log(7)≠0]+(-⅟(-log(10)+-log(7))+ξ₀)·([(-log(10)+-log(7))·ξ₀+-1≠0]·[(-log(10)+-log(7))·ξ₀+-1≤0]·log((log(10)+log(7))·ξ₀+1)+[(log(10)+log(7))·ξ₀+1≠0]·[(log(10)+log(7))·ξ₀+1≤0]·log((-log(10)+-log(7))·ξ₀+-1))·[log(10)+log(7)≠0]·ξ₀+(-⅟(2·log(10)·log(7)+log(10)²+log(7)²)+ξ₀·⅟(-log(10)+-log(7)))·([(-log(10)+-log(7))·ξ₀+-1≠0]·[(-log(10)+-log(7))·ξ₀+-1≤0]·log((log(10)+log(7))·ξ₀+1)+[(log(10)+log(7))·ξ₀+1≠0]·[(log(10)+log(7))·ξ₀+1≤0]·log((-log(10)+-log(7))·ξ₀+-1))·[log(10)+log(7)≠0]·[log(10)+log(7)≤0]·[ξ₀+⅟(log(10)+log(7))≤0]+-[-log(10)+-log(7)≤0]·[log(10)+log(7)≠0]·τ+-[-ξ₀+⅟(-log(10)+-log(7))≠0]·[-⅟(-log(10)+-log(7))+ξ₀≤0]·[log(10)+log(7)≠0]·[log(10)+log(7)≤0]·⅟(2·log(10)·log(7)+log(10)²+log(7)²)+-[log(10)+log(7)≠0]·[log(10)+log(7)≤0]·[ξ₀+⅟(log(10)+log(7))≤0]·ξ₀·⅟(-log(10)+-log(7))+-[log(10)+log(7)≠0]·[log(10)+log(7)≤0]·[ξ₀+⅟(log(10)+log(7))≤0]·⅟(-2·log(10)·log(7)+-log(10)²+-log(7)²)+-[log(10)+log(7)≠0]·[log(10)+log(7)≤0]·τ+-[log(10)+log(7)≠0]·ξ₀²·⅟2+-τ+[-log(10)+-log(7)≤0]·[-ξ₀+-⅟(log(10)+log(7))≠0]·[log(10)+log(7)≠0]·[ξ₀+⅟(log(10)+log(7))≤0]·⅟(-2·log(10)·log(7)+-log(10)²+-log(7)²)+[log(10)+log(7)=0]·log(-1)·ξ₀²·⅟2".dParse.solveFor("τ".dVar));
//writeln("log((log(10)+log(7))·ξ₀+1)·ξ₀".dParse.tryGetAntiderivative);
//writeln("[-ξ₀+⅟(-log(10)+-log(7))≠0]·[-⅟(-log(10)+-log(7))+ξ₀≤0]·log((log(10)+log(7))·ξ₀+1)·ξ₀".dParse.tryGetAntiderivative);
//writeln("[-log(10)+-log(7)≠0]·[-ξ₀+⅟(-log(10)+-log(7))≠0]·[-⅟(-log(10)+-log(7))+ξ₀≤0]·[log(10)+log(7)≤0]·log((log(10)+log(7))·ξ₀+1)·ξ₀".dParse.tryGetAntiderivative);
//writeln("-[log(10)+log(7)≠0]·ξ₀+[(-log(10)+-log(7))·ξ₀+-1≠0]·[(-log(10)+-log(7))·ξ₀+-1≤0]·[log(10)+log(7)≠0]·log((log(10)+log(7))·ξ₀+1)·ξ₀+[(-log(10)+-log(7))·ξ₀+-1≠0]·[(-log(10)+-log(7))·ξ₀+-1≤0]·[log(10)+log(7)≠0]·log((log(10)+log(7))·ξ₀+1)·⅟(log(10)+log(7))+[(log(10)+log(7))·ξ₀+1≠0]·[(log(10)+log(7))·ξ₀+1≤0]·[log(10)+log(7)≠0]·log((-log(10)+-log(7))·ξ₀+-1)·ξ₀+[(log(10)+log(7))·ξ₀+1≠0]·[(log(10)+log(7))·ξ₀+1≤0]·[log(10)+log(7)≠0]·log((-log(10)+-log(7))·ξ₀+-1)·⅟(log(10)+log(7))".dParse.tryGetAntiderivative);
//writeln("log((log(7)+log(10))·ξ₀+1)·ξ₀".dParse.tryGetAntiderivative);
//writeln("log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₀+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·ξ₀³".dParse.tryGetAntiderivative);
//writeln("∫dξ₁(-147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(100)·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(100)·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(100)·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+-147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(100)·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(100)·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(100)·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+-21/100·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·ξ₁²·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+-21/100·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·ξ₁²·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+-5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(21)·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(21)·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(21)·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+-5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(21)·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(21)·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(21)·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+-591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(91)·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+-591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(91)·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(91)·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(91)·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+-591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(91)·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(91)·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(10)·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(10)·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(10)·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(7)·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(7)·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(7)·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(10)·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(10)·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(10)·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(7)·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(7)·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(7)·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+-9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+-9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+-9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(100)·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(100)·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(100)·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(100)·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(100)·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+147808843/90000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(100)·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+21/100·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·ξ₁·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+21/100·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·ξ₁·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(21)·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(21)·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(21)·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(21)·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(21)·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+5733/8000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(21)·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(91)·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(91)·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(91)·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(91)·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(91)·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+591493357/360000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(91)·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(10)·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(10)·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(10)·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(7)·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(7)·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·log(7)·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(10)·ξ₁²·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(10)·ξ₁²·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(10)·ξ₁³·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(7)·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(7)·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+79331/72000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·log(7)·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₁+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·ξ₁²·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·ξ₁³·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+9581312657/7200000000·[-1+ξ₁≤0]·[-ξ₁≤0]·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₁+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·ξ₁³·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²))".dParse.simplify(one));
//writeln(dIntSmp("((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·(log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₀+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))+log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₀+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91)))·ξ₀·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+(-11333/1080·log(10)+-84499051/5400000·log(91)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·(log(-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))+log(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91)))·(⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²))·ξ₀+(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·(log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₀+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))+log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₀+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91)))·(⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²))·ξ₀+(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+84499051/5400000·log(91))·(log(-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))+log(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91)))·ξ₀·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+(-11333/540·log(10)+-84499051/2700000·log(91)+1368758951/54000000+21115549/675000·log(100)+273/20000·log(21))·log(ξ₀)·ξ₀·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+(-11333/540·log(10)+-84499051/2700000·log(91)+1368758951/54000000+21115549/675000·log(100)+273/20000·log(21))·log(ξ₀)·ξ₀·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+(-11333/540·log(7)+-1368758951/54000000+-21115549/675000·log(100)+-273/20000·log(21)+11333/540·log(10)+84499051/2700000·log(91))·log(ξ₀)·ξ₀·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+(11333/1080·log(-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))+11333/1080·log(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91)))·(⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²))·log(7)·ξ₀+(11333/1080·log(-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))+11333/1080·log(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91)))·log(10)·ξ₀·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+(11333/540·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+11333/540·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²))·log(7)·log(ξ₀)·ξ₀+-2·log(ξ₀)·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+-2·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+-log(-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+-log(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+2·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₀+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+2·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₀+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91)))·(-21/100·ξ₀+21/200+21/200·ξ₀²)·[-1+ξ₀≤0]·[-ξ₀≤0]·ξ₀+((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·(log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₀+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))+log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₀+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91)))·ξ₀·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+(-11333/1080·log(10)+-84499051/5400000·log(91)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·(log(-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))+log(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91)))·(⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²))·ξ₀+(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·(log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₀+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))+log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₀+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91)))·(⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²))·ξ₀+(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+84499051/5400000·log(91))·(log(-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))+log(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91)))·ξ₀·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+(-11333/540·log(10)+-84499051/2700000·log(91)+1368758951/54000000+21115549/675000·log(100)+273/20000·log(21))·log(ξ₀)·ξ₀·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+(-11333/540·log(10)+-84499051/2700000·log(91)+1368758951/54000000+21115549/675000·log(100)+273/20000·log(21))·log(ξ₀)·ξ₀·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+(-11333/540·log(7)+-1368758951/54000000+-21115549/675000·log(100)+-273/20000·log(21)+11333/540·log(10)+84499051/2700000·log(91))·log(ξ₀)·ξ₀·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+(11333/1080·log(-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))+11333/1080·log(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91)))·(⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²))·log(7)·ξ₀+(11333/1080·log(-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))+11333/1080·log(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91)))·log(10)·ξ₀·⅟((-1031303/648000·log(21)+-15512145191683/5248800000+128436889/52488·log(10))·log(7)+(-1921514959/810000000·log(21)+-239302516817/65610000·log(7)+-28902096699029099/6561000000000+1784243851843999/328050000000·log(91)+239302516817/65610000·log(10))·log(100)+(-957627744983/262440000·log(10)+115658832407255501/26244000000000+7689413641/3240000000·log(21)+957627744983/262440000·log(7))·log(91)+-124557064541/64800000000·log(21)+-128436889/104976·log(10)²+-128436889/104976·log(7)²+-1873501065942620401/1049760000000000+-445866409571401/164025000000·log(100)²+-7140089619900601/2624400000000·log(91)²+-8281/16000000·log(21)²+1031303/648000·log(10)·log(21)+15512145191683/5248800000·log(10))+(11333/540·⅟((-115658832407255501/26244000000000+-1784243851843999/328050000000·log(100)+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000+239302516817/65610000·log(100))·log(7)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+-239302516817/65610000·log(10)·log(100)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+1921514959/810000000·log(100)·log(21)+28902096699029099/6561000000000·log(100)+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²)+11333/540·⅟((-115658832407255501/26244000000000+-7689413641/3240000000·log(21)+-957627744983/262440000·log(7)+957627744983/262440000·log(10))·log(91)+(-128436889/52488·log(10)+1031303/648000·log(21)+15512145191683/5248800000)·log(7)+(-1784243851843999/328050000000·log(91)+-239302516817/65610000·log(10)+1921514959/810000000·log(21)+239302516817/65610000·log(7)+28902096699029099/6561000000000)·log(100)+-1031303/648000·log(10)·log(21)+-15512145191683/5248800000·log(10)+124557064541/64800000000·log(21)+128436889/104976·log(10)²+128436889/104976·log(7)²+1873501065942620401/1049760000000000+445866409571401/164025000000·log(100)²+7140089619900601/2624400000000·log(91)²+8281/16000000·log(21)²))·log(7)·log(ξ₀)·ξ₀+-2·log(ξ₀)·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+-2·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+-log(-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+-log(-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+2·log((-11333/1080·log(10)+-84499051/5400000·log(91)+11333/1080·log(7)+1368758951/108000000+21115549/1350000·log(100)+273/40000·log(21))·ξ₀+-11333/324·log(10)+-84499051/1620000·log(91)+11333/324·log(7)+1368758951/32400000+21115549/405000·log(100)+91/4000·log(21))·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))+2·log((-11333/1080·log(7)+-1368758951/108000000+-21115549/1350000·log(100)+-273/40000·log(21)+11333/1080·log(10)+84499051/5400000·log(91))·ξ₀+-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91))·⅟(-11333/324·log(7)+-1368758951/32400000+-21115549/405000·log(100)+-91/4000·log(21)+11333/324·log(10)+84499051/1620000·log(91)))·(-21/200·ξ₀+21/200)·[-1+ξ₀≤0]·[-ξ₀≤0]·ξ₀²".dParse,one));
//writeln("[a·x≤0]".dParse.getBoundsForVar("x".dVar));
//writeln("[a·x≤0]".dParse.linearizeConstraints("x".dVar).simplify(one));
//import integration;
//writeln(tryGetAntiderivative("[-a·ξ₀+-b≤0]·[a·ξ₀+b≠0]·[a≠0]·log(a·ξ₀+b)·⅟a".dParse.simplify(one)));
//writeln(tryGetAntiderivative("[-a·x+-b≤0]·[a·x+b≠0]·[a≠0]·log(a·x+b)·⅟a+[a=0]·x·⅟b+[a·x+b≠0]·[a·x+b≤0]·[a≠0]·log(-a·x+-b)·⅟a".dParse.substitute("x".dVar,db1).simplify(one)));
//writeln("∫dx x/(5·x+3)·[0≤x]·[x≤1]".dParse.simplify(one).toString(Format.matlab));
//writeln("∫dx (d/dx)⁻¹[e^(-x²)](a·x+b)·[1≤x]·[x≤2]".dParse.simplify(one));
//writeln("∫dx e^(a·x+b)·[1≤x]·[x≤2]".dParse.simplify(one));
//writeln("∫dx log(a·x+b)^2·[1≤x]·[x≤2]".dParse.simplify(one));
//writeln("∫dx 1/(a·x+b)·[1≤x]·[x≤2]".dParse.simplify(one));
//writeln("∫dx log(a·x+b)·[1≤x]·[x≤2]".dParse.simplify(one));
//writeln("∫dx x/(x²+1)·[0≤x]·[x≤1]".dParse.simplify(one));
//writeln("∫dx x·log(x)·[1≤x]·[x≤2]".dParse.simplify(one));
//writeln("∫dx x·log(x)^2·[1≤x]·[x≤2]".dParse.simplify(one));
//writeln("∫dy 1/x·δ[(1+y²)-x]".dParse.simplify(one));
//writeln("∫dx [-x+1≠0]·[-x+1≤0]·⅟x·⅟y^(1/2)·δ[y-(-1+x)]".dParse.simplify(one));
//writeln("∫dx 1/(1+x)·1/y·δ[y-x^(1/3)]".dParse.simplify(one));
//writeln("∫dx (1-y)^(1/2)·[-1≤x]·[x≤1]·δ[y-x^2]".dParse.simplify(one));
//writeln("∫dξ₁ ξ₁·[-2+ξ₁≤0]·[-ξ₁+1≤0]".dParse.simplify(one));
//writeln("∫dx[0≤x]·[x≤1]·[x≠1/2]".dParse.simplify(one));
//writeln("[-(∫dξ₁((-21/200+21/200·ξ₁)·(∫dξ₂[-1+ξ₂≤0]·[-ξ₂≤0]·ξ₂·⅟(21/100·ξ₁+7/10·ξ₂))·[-1+ξ₁≤0]·[-ξ₁≤0]·ξ₁+(-3/20·ξ₁+3/20)·[-1+ξ₁≤0]·[-10/3+-ξ₁≠0]·[-ξ₁≤0]·log(21/100·ξ₁+7/10)·ξ₁))·40+-(∫dξ₁(-3/20·log(ξ₁)·ξ₁+3/20·log(ξ₁)·ξ₁²)·[-1+ξ₁≤0]·[-ξ₁≤0]·[ξ₁≠0])·40+-log(100)+log(21)≠0]".dParse.simplify(one));
//writeln("[1+√1̅+̅4̅·̅y̅≤0]".dParse.simplify(one));
//writeln("δ[x·y]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("∫dx [0≤x]·[x≤1]".dParse.simplify(one));
//writeln("[⅟√3̅7̅4̅4̅8̅7̅·√1̅0̅0̅0̅≤0]".dParse.simplify(one));
//writeln(dDiff("x".dVar,"x/(x^2-y^2)^(1/2)".dParse).simplify(one));
/+//auto v="x".dVar;
//writeln(dInt(v,dE.dPow(2.dℤ.dMult(3.dℤ.dPlus(3.dℤ).dPlus(3.dℤ))).dPow(v.dPlus(v))));
auto d=new Distribution();
auto v=d.declareVar("x₁");
//d.distribute(v,uniformPDF(v,-one,one+one));
d.distribute(v,gaussianPDF(v,zero,one));
writeln(d);
auto w=d.declareVar("x₂");
d.distribute(w,gaussianPDF(w,one,one));
writeln(d);
/*d.marginalize(v);
writeln(d);
d.marginalize(w);
writeln(d);*/
//d.distribute(w,gaussianPDF(w,zero,one));
auto u=d.declareVar("x₃");
d.assign(u,v+w);
//d.distribute(v,gaussianPDF(v,0.dℤ,1.dℤ));
//d.distribute(v,gaussianPDF(v,0.dℤ,1.dℤ));
//d.distribute(v,gaussianPDF(v,0.dℤ,1.dℤ));
writeln(d);
d.marginalize(v);
writeln(d);
d.marginalize(w);
writeln(d);
writeln(one/10*(one/2));
writeln((one+one)^^-2+2);
writeln(-one-2^^(-one)*3);
writeln((-one)+2^^(-one)*(-1)+2^^(-one)*(-1));
writeln((v^^2+w^^2)^^(one/2));
writeln(underline(overline(overline("HELLO"))));
writeln(dInt(v,2*v));
writeln(dInt(v,v+w));
writeln(dInt(v,v.dDelta)+dInt(w,w.dDelta));
writeln(dInt(v,one)+dInt(w,one));
writeln((3*v-2*w).solveFor(v,zero));
writeln(-1*(-one/2));
writeln((v^^2/2)/(v^^2/2));+/
/*auto d=new Distribution();
auto x=d.declareVar("x");
d.initialize(x,one);
d.assign(x,x+1);
auto y=d.declareVar("y");
d.initialize(y,3.dℤ);
auto tmpx=d.getVar("x");
d.initialize(tmpx,x);
auto dthen=d.dup(),dothw=d.dup();
dthen.assign(y,y-x);
writeln(dthen," ",dothw);
d=dthen.join(d.vbl,d.symtab,d.freeVars,dothw,dLt(x,y));
writeln(d);
d.marginalize(tmpx);
d.marginalize(x);
//writeln((x*dLtZ(x)).substitute(x,one+one));
writeln(d);*/
/*auto x="x".dVar,y="y".dVar;
writeln(dDiff(x,x^^(x^^2)*y));
writeln(dDiff(y,dDiff(x,x^^(x^^2)*y)));
writeln(dDiff(x,dLog(x)));
writeln(dDiff(x,dDiff(x,dE^^(2*x))));
writeln(dDiff(x,2^^(dLog(x))));
writeln(dLog(dE^^x));
writeln(dDiff(y,dInt(x,x*dGtZ(x)*dLtZ(x,y))));*/
/*auto f="f".dVar,x="x".dVar;
auto g="g".dVar,y="y".dVar;
auto z="z".dVar;
auto dist=dFun(f,[x,y])*dDelta(x*y-z);
//auto dist=uniformPDF(x,zero,one)*uniformPDF(y,zero,one)*dDelta(x*y-z);
writeln(dist);
//writeln(dInt(x,dist));
//writeln(dInt(y,dInt(x,dist)));*/
/*auto x="x".dVar, y="y".dVar;
writeln(splitMultAtVar(dE^^((x+y)^^2),x));*/
//-(-2+__g₂)²·⅙+-x₁²·¼+-¼+x₁·½
/*auto x="x".dVar,y="y".dVar;
auto e=-(-2+x)^^2/6-y^^2/4-one/4+y/3;
writeln(splitPlusAtVar(e,x));*/
/*auto x="x".dVar;
writeln((x^^10+2*x^^2+3*x+4).asPolynomialIn(x).toDExpr());*/
/*auto x="x".dVar,y="y".dVar;
auto pdf=gaussianPDF(x,1.dℤ,2.dℤ)*gaussianPDF(y,3.dℤ,4.dℤ);
writeln(dInt(x,pdf));
writeln(dInt(y,pdf));
writeln(dInt(y,dInt(x,pdf)));
writeln(dInt(x,dInt(y,pdf)));*/
//(∫dξ₁[-1+ξ₁≤0]·[-ξ₁≤0]·δ[-z+y·ξ₁])·[-1+y≤0]·[-y≤0]
/+auto xi1="ξ₁".dVar,y="y".dVar,z="z".dVar;
auto res=dInt(xi1,dDelta(y*xi1)*dLeZ(xi1));
writeln(res);
writeln(dInt(y,res));+/
/*auto a="a".dVar,b="b".dVar,r="r".dVar;
auto exp=dE^^(-a^^2/2-b^^2/2)*dDelta(r-1)/(2*dΠ);
writeln(dInt(b,dInt(a,exp)));*/
/+import dparse;
auto x="x".dVar,y="y".dVar,a="a".dVar,b="b".dVar;
auto e="(δ[-x+1+[-b+a<0]]·δ[-y+1+[-b+a<0]]·⅟4+δ[-x+[-b+a<0]]·δ[-y+[-b+a<0]]·⅟4)·e^(-a²·⅟2+-b²·⅟2)·δ[-r+[-x+y=0]]·⅟π".dParse;
//auto e2=dInt(y,dInt(x,e));
//writeln(dInt(a,dInt(b,e2)));
//auto e2=dInt(a,e);
auto e2="((∫dξ₁δ[-x+1+[-b+ξ₁<0]]·δ[-y+1+[-b+ξ₁<0]]·⅟e^(ξ₁²·⅟2))·⅟4+(∫dξ₁δ[-x+[-b+ξ₁<0]]·δ[-y+[-b+ξ₁<0]]·⅟e^(ξ₁²·⅟2))·⅟4)·δ[-r+[-x+y=0]]·⅟e^(b²·⅟2)·⅟π".dParse;
writeln(dInt(b,dInt(y,dInt(x,e2))));
//writeln(dInt(x,e2));
//auto e3="(∫dξ₁((∫dξ₂δ[-x+1+[-ξ₁+ξ₂<0]]·δ[-y+1+[-ξ₁+ξ₂<0]]·⅟e^(ξ₂²·⅟2))·⅟4+(∫dξ₂δ[-x+[-ξ₁+ξ₂<0]]·δ[-y+[-ξ₁+ξ₂<0]]·⅟e^(ξ₂²·⅟2))·⅟4)·⅟e^(ξ₁²·⅟2))·δ[-r+[-x+y=0]]·⅟π".dParse;
//auto e3="(∫dξ₁δ[-x+1+[-b+ξ₁<0]]·δ[-y+1+[-b+ξ₁<0]]·⅟e^(ξ₁²·⅟2))·⅟4+(∫dξ₁δ[-x+[-b+ξ₁<0]]·δ[-y+[-b+ξ₁<0]]·⅟e^(ξ₁²·⅟2))·⅟4)·δ[-r+[-x+y=0]]·⅟e^(b²·⅟2)·⅟π".dParse;
//auto e3="∫dξ₁((∫dξ₂δ[-y+1+[-b+ξ₂<0]]·δ[-ξ₁+1+[-b+ξ₂<0]]·⅟e^(ξ₂²·⅟2)))·⅟4·⅟e^(b²·⅟2)·⅟π".dParse;
//writeln(dInt(b,dInt(a,e))is e3);
//writeln(e3);
//writeln(dInt(y,dInt(x,e3)));
/*auto e3="(∫dξ₁((∫dξ₂δ[-x+1+[-ξ₁+ξ₂<0]]·δ[-y+1+[-ξ₁+ξ₂<0]]·⅟e^(ξ₂²·⅟2))·⅟4)·⅟e^(ξ₁²·⅟2))·δ[-r+[-x+y=0]]·⅟π".dParse;
writeln(e3);
writeln(dInt(y,dInt(x,e3)));*/ +/
/*import dparse;
writeln("((x₃)²)".dParse);*/
//writeln("⅟√1̅0̅".dParse);
//writeln("e^((x₃·⅟2+⅟6)²·3·⅟5+-11·⅟12+-x₃²·⅟4+x₃·⅟2)·⅟√1̅0̅·⅟√π̅".dParse);
//writeln("∫dξ₁δ[-ξ₁·⅟2+1]".dParse);
//writeln("[x<0]^2".dParse);
//writeln("[(-[-1+z≤0]+1)·z+-1≤0]".dParse);
//writeln("[(-1+z)·[-z+1≠0]·[-z+1≤0]+-[-1+z≤0]≤0]".dParse);
// [([-z+1<0]·z+-1≤0]
//writeln("(((-1+w)·[-w+2≤0]+-1)·[-2+w≤0]+(-1+w)·[-w+2≤0])".dParse.factorDIvr!(a=>dLeZ(a)));
//writeln("x".dVar^^2);
//writeln("(∫dξ₁((-1+-ξ₁+x)·[-2+-ξ₁+x≤0]+[-x+2+ξ₁≠0]·[-x+2+ξ₁≤0])²·[-1+ξ₁≤0]·[-2+-ξ₁+x≤0]·[-x+1+ξ₁≤0]·[-x+2+ξ₁≠0]·[-ξ₁≤0])".dParse);
//writeln("∫dξ₁(-x+1+ξ₁)·(-ξ₁+x)·[-1+ξ₁≤0]·[-2+-ξ₁+x≤0]·[-x+1+ξ₁≠0]·[-x+1+ξ₁≤0]·[-ξ₁≤0]".dParse);
//writeln("(∫dξ₁((-1+ξ₁)²·ξ₁+-(-1+ξ₁)²)·[-1+-ξ₁+x≤0]·[-4+ξ₁≤0]·[-x+ξ₁≤0]·[-ξ₁+3≠0]·[-ξ₁+3≤0])".dParse);
//writeln("∫dcur[-1+-2·cur+2·x≠0]·[-1+-2·cur+2·x≤0]·[-1+-cur+x≤0]·[-1+2·cur≠0]·[-1+2·cur≤0]·[-1+cur≤0]·[-cur≤0]·[-x+cur≤0]".dParse);
//writeln("[([x=0]+x)·(1+[x=0])≤0]".dParse.simplify(one)); // non-termination in factorDIvr
//writeln("x·[x=0]".dParse.simplify(one));
//writeln("[([x≠0]+1)·(1+[x≠0])≤0]".dParse);
//writeln("[x<0]".dParse.simplify("[x≤0]".dParse));
//writeln("[x≤0]".dParse.simplify("[-x<0]".dParse));
//writeln("[[z≠0]·[z≤0]≤0]".dParse);
//writeln("[z+-3≤0]·[z+-2≤0]".dParse);
//writeln("[-3+x≤0]·[-x+2≤0]".dParse);
//writeln("[z≤0]".dParse.simplify("[-z≤0]·[z≠0]".dParse));
//writeln("[[x≤0]≤0]".dParse);
//writeln("(∫dξ₁[-b+ξ₁≠0]·[-b+ξ₁≤0]·⅟e^(ξ₁²·⅟2))·δ[-x+2]·δ[-y+2]·⅟4+(∫dξ₁[-b+ξ₁≠0]·[-ξ₁+b≤0]·⅟e^(ξ₁²·⅟2))·δ[-x+1]·δ[-y+1]·⅟4");
//writeln("([-b+a≠0]·[-b+a≤0]·⅟e^(a²·⅟2))·⅟4+([-b+a≠0]·[-a+b≤0]·⅟e^(a²·⅟2))·⅟4".dParse.simplify(one));
//writeln("(([-b+a=0]+[-b+a≠0]·⅟2)·[-b+a≠0]·δ[-r+1]+[-b+a=0]·δ[-r+1]·⅟2)·e^(-a²·⅟2+-b²·⅟2)·⅟π".dParse.simplify(one).simplify(one));
//writeln("([-a+b≤0]·[-b+a≠0]·δ[-r+1]·⅟2+[-b+a≤0]·δ[-r+1]·⅟2)·e^(-a²·⅟2+-b²·⅟2)·⅟π".dParse.simplify(one));
//writeln("((∫dξ₁(∫dξ₂[-ξ₁+ξ₂≠0]·[-ξ₁+ξ₂≤0]·⅟e^(ξ₂²·⅟2))·⅟e^(ξ₁²·⅟2))·δ[-r+1]·⅟2+(∫dξ₁(∫dξ₂[-ξ₁+ξ₂≠0]·[-ξ₂+ξ₁≤0]·⅟e^(ξ₂²·⅟2))·⅟e^(ξ₁²·⅟2))·δ[-r+1]·⅟2)·⅟π".dParse.simplify(one));
//writeln("∫dage2₁∫dage2₂∫dage1₁∫dage1₂(-[-age1₁+age2₁≠0]·[-age1₁+age2₁≤0]+1)·(δ[-isGirl1+1]·⅟1682+δ[isGirl1]·⅟1682)·(δ[-isGirl2+1]+δ[isGirl2])·[-30+age1≤0]·[-30+age2≤0]·[-age1+1≤0]·[-age2+1≤0]·isGirl2·δ[-age1₁+age1]·δ[-age1₂+age1]·δ[-age2₁+age2]·δ[-age2₂+age2]+(δ[-isGirl1+1]·⅟1682+δ[isGirl1]·⅟1682)·(δ[-isGirl2+1]+δ[isGirl2])·[-30+age1≤0]·[-30+age2≤0]·[-age1+1≤0]·[-age1₁+age2₁≠0]·[-age1₁+age2₁≤0]·[-age2+1≤0]·isGirl1·δ[-age1₁+age1]·δ[-age1₂+age1]·δ[-age2₁+age2]·δ[-age2₂+age2]".dParse);
/+auto eu4="-125·[-4+x≠0]·[-5+x≤0]·[-x+4≤0]·x·⅟6+-22·[-3+x≤0]·[-x+2≤0]·[-x+3≠0]·x·⅟3+-31·[-3+x≤0]·[-x+2≠0]·[-x+2≤0]·x·⅟6+-39·[-4+x≤0]·[-x+3≠0]·[-x+3≤0]·x²·⅟4+-4·[-3+x≤0]·[-x+2≤0]·[-x+3≠0]·x³·⅟3+-4·[-4+x≠0]·[-4+x≤0]·[-x+3≤0]·x²+-50·[-4+x≤0]·[-x+3≠0]·[-x+3≤0]·⅟3+-5·[-2+x≤0]·[-x+1≤0]·[-x+2≠0]·⅟24+-5·[-4+x≠0]·[-5+x≤0]·[-x+4≤0]·x³·⅟6+-7·[-3+x≤0]·[-x+2≠0]·[-x+2≤0]·x³·⅟6+-85·[-4+x≠0]·[-4+x≤0]·[-x+3≤0]·⅟8+-[-2+x≤0]·[-x+1≠0]·[-x+1≤0]·x²·⅟4+-[-2+x≤0]·[-x+1≠0]·[-x+1≤0]·x⁴·⅟24+-[-2+x≤0]·[-x+1≤0]·[-x+2≠0]·x²+-[-2+x≤0]·[-x+1≤0]·[-x+2≠0]·x⁴·⅟8+-[-4+x≠0]·[-4+x≤0]·[-x+3≤0]·x⁴·⅟24+-[-4+x≤0]·[-x+3≠0]·[-x+3≤0]·x⁴·⅟8+10·[-3+x≤0]·[-x+2≤0]·[-x+3≠0]·⅟3+11·[-4+x≤0]·[-x+3≠0]·[-x+3≤0]·x³·⅟6+11·[-x+2=0]·⅟24+11·[-x+3=0]·⅟24+131·[-4+x≤0]·[-x+3≠0]·[-x+3≤0]·x·⅟6+15·[-3+x≤0]·[-x+2≠0]·[-x+2≤0]·x²·⅟4+25·[-3+x≤0]·[-x+2≠0]·[-x+2≤0]·⅟8+25·[-4+x≠0]·[-5+x≤0]·[-x+4≤0]·x²·⅟4+2·[-2+x≤0]·[-x+1≤0]·[-x+2≠0]·x³·⅟3+2·[-2+x≤0]·[-x+1≤0]·[-x+2≠0]·x·⅟3+2·[-4+x≠0]·[-4+x≤0]·[-x+3≤0]·x³·⅟3+32·[-4+x≠0]·[-4+x≤0]·[-x+3≤0]·x·⅟3+5·[-3+x≤0]·[-x+2≤0]·[-x+3≠0]·x²+625·[-4+x≠0]·[-5+x≤0]·[-x+4≤0]·⅟24+[-1+x≤0]·[-x+1≠0]·[-x≤0]·x⁴·⅟24+[-2+x≤0]·[-x+1≠0]·[-x+1≤0]·x³·⅟6+[-2+x≤0]·[-x+1≠0]·[-x+1≤0]·x·⅟6+[-3+x≤0]·[-x+2≠0]·[-x+2≤0]·x⁴·⅟8+[-3+x≤0]·[-x+2≤0]·[-x+3≠0]·x⁴·⅟8+[-4+x≠0]·[-5+x≤0]·[-x+4≤0]·x⁴·⅟24+[-x+1=0]·⅟24+[-x+4=0]·⅟24".dParse;
auto ey=uniformPDF("y".dVar,zero,one);
auto eu=eu4*ey*dDelta("z".dVar-"x".dVar-"y".dVar);
auto wy=dInt("y".dVar,eu);
auto wx=dInt("x".dVar,wy);
wx=wx.simplify(one);+/
//writeln();
//writeln(
//auto k=(eu4*ey);//.substitute("y".dVar,-"x".dVar+"z".dVar);
//writeln(k);
/+DExpr x="x".dVar;
DExpr d=zero;
foreach(i;0..13){
foreach(j;0..13){
d=d+j*x^^j/(i+1)*dLe(i.dℚ,x)*dLt(x,(i+1).dℚ);
}
}
//writeln(d);
writeln(dInt("x".dVar,d*dLe(x,"y".dVar)));+/
//writeln("([-1+y≤0]·y+[-y+1≠0]·[-y+1≤0])^1000".dParse);
//writeln("-[-x+3≤0]+2·[-3+x≤0]·[-x+3≠0]+[-x+3≤0]·x".dParse^^31);
//writeln(d);
//DExpr x="x".dVar,y="y".dVar;
//writeln((x+x^^2)^^10);
//writeln("-4·[-i+2≤0]·⅟(-2·i+2·i²)+[-i+2≤0]·i·⅟(-i+i²)".dParse.simplify(one));
//writeln("∫da[-a+b≤0]·e^(-a²·⅟2+-b²·⅟2)".dParse);
//writeln("∫dx(((-113·⅟8+-39·x²·⅟4+-x⁴·⅟8+11·x³·⅟6+133·x·⅟6)·[-x+3≠0]·[-x+3≤0]+-23·[-3+x≤0]·[-x+3≠0]·x·⅟3+-31·[-x+3≤0]·⅟8+-4·[-3+x≤0]·[-x+3≠0]·x³·⅟3+4·[-3+x≤0]+5·[-3+x≤0]·[-x+3≠0]·x²+[-3+x≤0]·[-x+3≠0]·x⁴·⅟8)·(([-3+x≤0]+[-4+x≤0]·[-x+3≠0])·[-x+3≤0]+[-3+x≤0]·[-x+2≤0]·[-x+3≠0])+((-125·x·⅟6+-5·x³·⅟6+123·⅟8+25·x²·⅟4+x⁴·⅟24)·[-x+4≠0]·[-x+4≤0]+-4·[-4+x≤0]·[-x+4≠0]·x²+-85·[-4+x≤0]·⅟8+-[-4+x≤0]·[-x+4≠0]·x⁴·⅟24+2·[-4+x≤0]·[-x+4≠0]·x³·⅟3+32·[-4+x≤0]·[-x+4≠0]·x·⅟3+32·[-x+4≤0]·⅟3)·(([-4+x≤0]+[-5+x≤0]·[-x+4≠0])·[-x+4≤0]+[-4+x≤0]·[-x+3≤0]·[-x+4≠0])+((-3·[-2+x≠0]·[-3+x≤0]·⅟2+-3·[-2+x≤0]·⅟2)·[-x+2≤0]+-3·[-2+x≠0]·[-2+x≤0]·[-x+1≤0]·⅟2)·((-x²·⅟2+-⅟2+x)·[-2+x≠0]·[-x+2≤0]+-[-2+x≤0]·⅟2+2·[-x+2≤0]+[-2+x≠0]·[-2+x≤0]·x²·⅟2)+((-3·x²·⅟2+-x⁴·⅟4+-⅟4+x+x³)·[-2+x≠0]·[-x+2≤0]+-[-2+x≤0]·⅟4+4·[-x+2≤0]+[-2+x≠0]·[-2+x≤0]·x⁴·⅟4)·((-[-2+x≠0]·[-3+x≤0]·⅟3+-[-2+x≤0]·⅟3)·[-x+2≤0]+-[-2+x≠0]·[-2+x≤0]·[-x+1≤0]·⅟3)+((-3·x²·⅟2+-x⁴·⅟4+-⅟4+x+x³)·[-x+1≠0]·[-x+1≤0]+[-1+x≤0]·[-x+1≠0]·x⁴·⅟4+[-x+1≤0]·⅟4)·(([-2+x≤0]·[-x+1≠0]·⅟6+[-x+1=0]·⅟6)·[-x+1≤0]+[-1+x≤0]·[-x+1≠0]·[-x≤0]·⅟6)+((-3·x·⅟2+-x³·⅟3+19·⅟24+x²+x⁴·⅟24)·[-2+x≠0]·[-x+2≤0]+-5·[-2+x≤0]·⅟24+-[-2+x≠0]·[-2+x≤0]·x²·⅟4+-[-2+x≠0]·[-2+x≤0]·x⁴·⅟24+[-2+x≠0]·[-2+x≤0]·x³·⅟6+[-2+x≠0]·[-2+x≤0]·x·⅟3+[-x+2≤0]·⅟3)·(([-2+x≠0]·[-3+x≤0]+[-2+x≤0])·[-x+2≤0]+[-2+x≠0]·[-2+x≤0]·[-x+1≤0])+((-x+-x³·⅟3+x²+⅟3)·[-2+x≠0]·[-x+2≤0]+-[-2+x≤0]·⅟3+8·[-x+2≤0]·⅟3+[-2+x≠0]·[-2+x≤0]·x³·⅟3)·((3·[-2+x≠0]·[-3+x≤0]·⅟2+3·[-2+x≤0]·⅟2)·[-x+2≤0]+3·[-2+x≠0]·[-2+x≤0]·[-x+1≤0]·⅟2)+((-x+1)·[-2+x≠0]·[-x+2≤0]+-[-2+x≤0]+2·[-x+2≤0]+[-2+x≠0]·[-2+x≤0]·x)·(([-2+x≠0]·[-3+x≤0]·⅟3+[-2+x≤0]·⅟3)·[-x+2≤0]+[-2+x≠0]·[-2+x≤0]·[-x+1≤0]·⅟3)+((-x+1)·[-x+3≠0]·[-x+3≤0]+-2·[-3+x≤0]+3·[-x+3≤0]+[-3+x≤0]·[-x+3≠0]·x)·(([-3+x≤0]·⅟3+[-4+x≤0]·[-x+3≠0]·⅟3)·[-x+3≤0]+[-3+x≤0]·[-x+2≤0]·[-x+3≠0]·⅟3))·[-x≤0]·[x+-y≤0]".dParse);
//writeln(dDiff("x".dVar,"y".dVar));
//writeln("(∫dξ₁[-1+-ξ₁+x₃≤0]·[-1+ξ₁≤0]·[-x₃+ξ₁≤0]·[-ξ₁≤0])".dParse);
/+DExpr bound;
auto r=(cast(DIvr)"[-1+-ξ₁+x₃≤0]".dParse).getBoundForVar("x₃".dVar,bound);
writeln(r," ",bound);+/
//writeln("∫dxδ[-x]·δ[z+-x+-y]".dParse);
//writeln("∫dyδ[-x+0+-y]·[-y≤0]·[y+-1≤0]".dParse);
//writeln("∫dxδ[-x+z+-y]·δ[-x]".dParse.simplify(one));
//writeln(d
//writeln("!@# ", dDiff(dVar("x"),-dVar("x"),zero));
//writeln("∫dξ₁((-1+-ξ₁+x)·(-x+2+ξ₁)+(-x+1)·ξ₁+-x+x²·⅟2+ξ₁²·⅟2+⅟2)·[-1+ξ₁≤0]·[-2+-ξ₁+x≠0]·[-2+-ξ₁+x≤0]·[-x+1+ξ₁≤0]·[-ξ₁≤0]".dParse);
//writeln("∫dξ₁((-1+-ξ₁+x)·(-x+2+ξ₁))·[-1+ξ₁≤0]·[-2+-ξ₁+x≠0]·[-2+-ξ₁+x≤0]·[-x+1+ξ₁≤0]·[-ξ₁≤0]".dParse);
//writeln("(-1+-ξ₁+x)·(-x+2+ξ₁)".dParse.polyNormalize(dVar("ξ₁")).simplify(one));
//writeln("(∫dy[-1+y≤0]·[-w+x·y≤0]·[-y≤0]·[x·y≠0]·[x·y≤0]·⅟y)".dParse);
//writeln("∫dy[-1+z·⅟y≤0]·[-1+y≤0]·[-z·⅟y≤0]·[-y≤0]·[y≠0]·⅟y".dParse);
//writeln("(∫dξ₁[-1+ξ₁≤0]·[-z+ξ₁≤0]·[-z·⅟ξ₁≤0]·[-ξ₁≤0]·[ξ₁≠0]·⅟ξ₁)".dParse)
//writeln("(∫dξ₁[-1+ξ₁≤0]·[-z+ξ₁≤0]·[-z·⅟ξ₁≤0]·[-ξ₁≤0]·⅟ξ₁)".dParse);
//writeln("[((([-1+z≤0]·[-⅟0≤0]+[z≤0]·[⅟0≠0]·[⅟0≤0])·[-⅟0=0]+([-⅟0+z≤0]·[-⅟0≤0]+[-⅟0+z≤0]·[⅟0≠0]·[⅟0≤0])·[⅟0≠0])·[⅟0≤0]+[-1+z≤0]·[-⅟0≤0]·[⅟0≠0])·z+((([-z+1≠0]·[-⅟0≤0]+[-z≠0]·[⅟0≠0]·[⅟0≤0])·[-⅟0=0]+([-z+⅟0≠0]·[-⅟0≤0]+[-z+⅟0≠0]·[⅟0≠0]·[⅟0≤0])·[⅟0≠0])·[⅟0≤0]+[-z+1≠0]·[-⅟0≤0]·[⅟0≠0])·((([-z+1≤0]·[-⅟0≤0]+[-z≤0]·[⅟0≠0]·[⅟0≤0])·[-⅟0=0]+([-z+⅟0≤0]·[-⅟0≤0]+[-z+⅟0≤0]·[⅟0≠0]·[⅟0≤0])·[⅟0≠0])·[⅟0≤0]+[-z+1≤0]·[-⅟0≤0]·[⅟0≠0])·([-⅟0≤0]+[⅟0≠0]·[⅟0≤0]·⅟0)≠0]".dParse);
//writeln("∫dξ₁([-1+ξ₁≤0]·[-z+ξ₁≤0]·[-z≤0]·[-ξ₁≤0]·[-⅟0+ξ₁≤0]·⅟ξ₁)+∫dξ₁([-1+ξ₁≤0]·[-z+ξ₁≤0]·[-ξ₁+⅟0≠0]·[-ξ₁+⅟0≤0]·[-ξ₁≤0]·[z≤0]·⅟ξ₁)".dParse);
//writeln("[[-w·⅟z+1≤0]≠0]".dParse);
//writeln("[-w=0]·[-w·y≠0]".dParse);
/+SolutionInfo info;
SolUse usage={caseSplit:true,bound:true};
writeln(solveFor("-z·⅟ξ₁".dParse,dVar("ξ₁"),zero,usage,info)," ",info.caseSplits);+/
//writeln("∫dz[-1+-⅟z≤0]·[-1+⅟z≤0]·[z≠0]·⅟(-2·[z²≠0]·[z²≤0]·z²+2·[-z²≤0]·z²)".dParse);
//writeln("∫dy([-y+2≤0]·⅟2)·e^(-1+-y²·⅟4+y)·⅟√π̅".dParse.simplify(one));
//writeln("(∫dξ₁(((((((-2557.4741704993198255+629.1897385856640312·ξ₁)·ξ₁+4210.1081976674804537)·ξ₁+-3594.7906656730001487)·ξ₁+1694.9871901131500636)·ξ₁+-436.9879652054199823)·ξ₁+60.1321271299536022)·ξ₁+-5.1644521185101802)·[-1+ξ₁≤0]·[-10·ξ₁+1≤0]·[-w+ξ₁≠0]·[-w·⅟ξ₁≠0]·[-ξ₁+w≤0]·[-ξ₁≤0]·[ξ₁·⅟w≠0]·⅟ξ₁)".dParse);
//writeln("∫dtmp((∫dξ₁([-1+tmp≤0]·[-10·tmp+1≤0]+[-10+tmp≤0]·[-tmp+1≤0]+-log(ξ₁))·[-tmp+ξ₁≤0]·[-ξ₁+r≠0]·[-ξ₁+r≤0]·[-ξ₁≠0]·[-ξ₁≤0]·⅟ξ₁)·[-1+tmp≤0]·[-tmp≠0]·[-tmp≤0]·log(tmp))".dParse);
//writeln("∫dtmpfubi1((-(∫dξ₁[-1+ξ₁≤0]·[-ξ₁+tmpfubi1≤0]·[-ξ₁≠0]·[-ξ₁≤0]·log(ξ₁))·log(tmpfubi1)+∫dξ₁[-1+ξ₁≤0]·[-10·ξ₁+1≤0]·[-ξ₁+tmpfubi1≤0]·[-ξ₁≠0]·[-ξ₁≤0]·log(ξ₁))·[-tmpfubi1+r≠0]·[-tmpfubi1+r≤0]·[-tmpfubi1≠0]·[-tmpfubi1≤0]·⅟tmpfubi1)".dParse);
//writeln(dInt("x".dVar,dBounded!"[]"("x".dVar,zero,one)*-approxLog("x".dVar)).simplify(one));
//writeln("∫dξ₁([-10·r+1≠0]·⅟ξ₁+[-10·r+1≤0]·⅟ξ₁)·[-1+ξ₁≤0]·[-10·ξ₁+1≤0]·[-ξ₁+1≠0]·[-ξ₁≠0]·[-ξ₁≤0]".dParse);
//writeln("∫dx(log(x)·[-x<0]·[x+-1≤0])".dParse);
//writeln("∫dx(-log(r)+log(x))·[-1+x≤0]·[-x+r≤0]".dParse);
//writeln("∫dx([x+-y=0]·[3·y+z=0]·δ[x+-z])".dParse);
//writeln("(((((((1+ξ₁)·ξ₁+1)·ξ₁+1)·ξ₁+1)·ξ₁+1)·ξ₁+1)·ξ₁+1)·⅟ξ₁".dParse.polyNormalize("ξ₁".dVar));
//writeln("(∫dξ₁(((((((1+ξ₁)·ξ₁+1)·ξ₁+1)·ξ₁+1)·ξ₁+1)·ξ₁+1)·ξ₁+1)·[-1+ξ₁≤0]·[-10·ξ₁+1≤0]·[-ξ₁+r≤0]·[-ξ₁≠0]·[-ξ₁≤0]·⅟ξ₁)".dParse);
//writeln("∫dx(∫dy q(x,y))·[x=0]".dParse);
//writeln("[0.0=0]".dParse);
//writeln("(∫dξ₁[-ξ₁+3≠0]·[-ξ₁+3≤0]·⅟e^(3·ξ₁))".dParse.simplify(one));
//writeln("[x=0]·δ[x]".dParse.simplify(one));
//writeln("∫dx log(x)·1/x·[-x<0]·[x+-y≤0]".dParse.simplify(one).killIntegrals().simplify(one));
//writeln("2^(3/2)+2".dParse.simplify(one));
//writeln("⅟(2+√2̅)·√2̅".dParse.simplify(one));
//writeln("⅟2^(3·⅟2)".dParse.simplify(one));
//writeln("⅟(2·√2̅)·2".dParse.simplify(one));
import sym.integration,sym.asymptotics;
//writeln(tryGetAntiderivative(dVar("x"),"(e^(-1000·⅟3+-x²·⅟15+40·x·⅟3)·⅟√3̅0̅)".dParse,one));
//writeln(tryGetAntiderivative(dVar("x"),"((d/dx)⁻¹[e^(-x²)](-10·⅟3·√3̅0̅+x·⅟√3̅0̅))·e^(-x²·⅟30+20·x·⅟3))".dParse,one));
//writeln("lim[x→ ∞] (x+x)".dParse.simplify(one));
//writeln("∫dx((d/dx)⁻¹[e^(-x²)](-10·⅟3·√3̅0̅+x·⅟√3̅0̅))·e^(-x²·⅟30+20·x·⅟3)".dParse);
//writeln("lim[x→ ∞](((d/dx)⁻¹[e^(-x²)](-10·⅟3·√3̅0̅+x·⅟√3̅0̅))²·e^(1000·⅟3)·√3̅0̅+-(d/dx)⁻¹[e^(-x²)](-20·⅟3·√1̅5̅+x·⅟√1̅5̅)·e^(-x²·⅟30+1000·⅟3+20·x·⅟3)·⅟√2̅)".dParse.simplify(one));
//writeln("lim[ξ₁ → ∞]-(d/dx)⁻¹[e^(-x²)](-20·⅟3·√1̅5̅+ξ₁·⅟√1̅5̅)·e^(-ξ₁²·⅟30+1000·⅟3+20·ξ₁·⅟3)·⅟√2̅".dParse.simplify(one));
//writeln("lim[x→ ∞](-x²·⅟30+1000·⅟3+20·x·⅟3)".dParse.simplify(one));
//writeln(growsFasterThan(dVar("x"),-dVar("x")^^(5/2.dℤ),dParse("x·x")));
//auto anti=tryGetAntiderivative(dVar("z"),"((d/dx)⁻¹[e^(-x²)](-z·⅟√2̅+⅟√2̅)·e^(z²·⅟2)·√2̅+-(d/dx)⁻¹[e^(-x²)](-z·⅟√2̅)·e^(z²·⅟2)·√2̅)·⅟e^(z²·⅟2)·⅟√2̅·⅟√π̅)".dParse,one).antiderivative;
//writeln("∫dz((d/dx)⁻¹[e^(-x²)](-z·⅟√2̅+⅟√2̅)+-(d/dx)⁻¹[e^(-x²)](-z·⅟√2̅))".dParse.simplify(one));
//writeln(dLim(dVar("z"),dInf,anti));
//writeln(dLimSmp(dVar("x"),dInf,anti));
//writeln(dLimSmp(dVar("ξ₁"),dInf,"-(d/dx)⁻¹[e^(-x²)](-z·⅟√2̅)·ξ₁·⅟√π̅".dParse));
//writeln((-2)^^(one/2));
//writeln("lim[ξ₁ → -∞](d/dx)⁻¹[e^(-x²)](-20+ξ₁·⅟5)·e^(-ξ₁²·⅟50+200+4·ξ₁)·⅟√5̅0̅".dParse.simplify(one));
//writeln("lim[x → -∞]e^(-x²·⅟50+200+4·x)".dParse.simplify(one));
//writeln("lim[x→ -∞]-(x²·⅟50)".dParse.simplify(one));
//writeln("lim[x→ -∞] x²".dParse.simplify(one));
//writeln("(lim[ξ₁ → -∞]((d/dx)⁻¹[e^(-x²)](-20+ξ₁·⅟5)·5·e^(-ξ₁²·⅟50+200+4·ξ₁)·⅟√5̅0̅))".dParse.simplify(one));
//writeln("(lim[x → ∞]e^((1160·⅟161+2·x·⅟105)·y+-x²·⅟42+11000·⅟161+20·x·⅟7+y²·⅟483))".dParse.simplify(one));
//writeln("lim[ξ₁ → ∞](-ξ₁²·⅟42+20·ξ₁·⅟7+2·y·ξ₁·⅟105+y²·⅟483)".dParse.simplify(one));
//writeln(asymptoticNormalize(dVar("tmp"),"20·tmp·⅟7+2·tmp·y·⅟105".dParse));
//writeln("∫dξ₁(((-2+-2·[-1+ξ₁≤0])·ξ₁+1+[-1+ξ₁≤0])·(1+[-1+ξ₁≤0])·[-1+2·ξ₁≤0]·[-ξ₁+1≤0]+((-1+-[-1+ξ₁≤0])·ξ₁+⅟2+[-1+ξ₁≤0]·⅟2)·(2+2·[-1+ξ₁≤0])·[-1+2·ξ₁≤0]·[-ξ₁+1≤0]+((-[-3+2·ξ₁=0]·⅟2+-⅟2+ξ₁)·(1+[-3+2·ξ₁≤0])+-⅟2+-[-3+2·ξ₁≤0]·⅟2)·[-1+ξ₁≤0]·[-2·ξ₁+3≤0]+((1+[-1+ξ₁≤0])·ξ₁+-⅟2+-[-1+ξ₁≤0]·⅟2)·(4+4·[-1+ξ₁≤0])·[-1+2·ξ₁≤0]·[-ξ₁+1≤0]+(-3·[-ξ₁+2=0]+-3+3)·([-2+ξ₁≤0]+1)·[-1+2·ξ₁≤0]·[-ξ₁+2≤0])".dParse.simplify(one));
//writeln("∫dx⅟2·[-x≤0]·[x+-1≤0]·[x+-z≤0]·[z+-x+-2≤0]".dParse.simplify(one));
//writeln("[x+y+z+-5≤0]·[5+-(x+y)≤0]·[z≠0]·[-z≤0]".dParse.simplify(one)); // TODO
//writeln("∫dξ₁[-1+ξ₁=0]·q(ξ₁)".dParse.substituteFun("q".dFunVar,"δ[1+-x]".dParse,["x".dVar]).simplify(one));
//auto e="∫dx[-1+-y≤0]·[-1+x≤0]·[-1+y≤0]·[-x≤0]·[y≠0]·δ[-z+x·⅟y]·⅟2".dParse;
//writeln(dInt("y".dVar,e).simplify(one));
/+auto e1="(((∫dξ₁[-1+-ξ₁≤0]·[-ξ₁+⅟z≠0]·[-ξ₁+⅟z≤0]·[ξ₁≠0]·[ξ₁≤0]·⅟(-2·[⅟ξ₁≤0]·⅟ξ₁+2·[-⅟ξ₁≤0]·⅟ξ₁))·[z≤0]+(∫dξ₁[-1+-ξ₁≤0]·[-⅟z+ξ₁≤0]·[ξ₁≠0]·[ξ₁≤0]·⅟(-2·[⅟ξ₁≤0]·⅟ξ₁+2·[-⅟ξ₁≤0]·⅟ξ₁))·[-z≤0])·[-z≠0]+(∫dξ₁[-1+-ξ₁≤0]·[ξ₁≠0]·[ξ₁≤0]·⅟(-2·[⅟ξ₁≤0]·⅟ξ₁+2·[-⅟ξ₁≤0]·⅟ξ₁))·[-z=0])·[z≤0]".dParse;
auto e2="(((∫dξ₁[-1+ξ₁≤0]·[-ξ₁+⅟z≠0]·[-ξ₁+⅟z≤0]·[-ξ₁≤0]·[ξ₁≠0]·⅟(-2·[⅟ξ₁≤0]·⅟ξ₁+2·[-⅟ξ₁≤0]·⅟ξ₁))·[z≤0]+(∫dξ₁[-1+ξ₁≤0]·[-ξ₁≤0]·[-⅟z+ξ₁≤0]·[ξ₁≠0]·⅟(-2·[⅟ξ₁≤0]·⅟ξ₁+2·[-⅟ξ₁≤0]·⅟ξ₁))·[-z≤0])·[-z≠0]+(∫dξ₁[-1+ξ₁≤0]·[-ξ₁≤0]·[ξ₁≠0]·⅟(-2·[⅟ξ₁≤0]·⅟ξ₁+2·[-⅟ξ₁≤0]·⅟ξ₁))·[-z=0])·[-z≤0]".dParse;
writeln(dIntSmp("z".dVar,e2));+/
//writeln("lim[ξ₁ → ∞](d/dx)⁻¹[e^(-x²)](-skill1·⅟√3̅0̅+ξ₁·⅟√3̅0̅)·(d/dx)⁻¹[e^(-x²)](-skill2·⅟√3̅0̅+ξ₁·⅟√3̅0̅)·e^(skill2²·⅟30)·√3̅0̅".dParse.simplify(one));
//writeln("lim[ξ₁ → ∞](d/dx)⁻¹[e^(-x²)](-skill1·⅟√3̅0̅+ξ₁·⅟√3̅0̅)".dParse.simplify(one));
//writeln("lim[tmp → ∞](tmp·⅟√3̅0̅)".dParse.simplify(one));
//writeln("∫dx (d/dx)⁻¹[e^(-x²)](a·x+b)·[x≤y]".dParse.simplify(one));
//writeln("lim[ξ₁ → ∞]((d/dx)⁻¹[e^(-x²)](ξ₁·⅟a)·ξ₁·⅟a+-⅟e^(ξ₁²·⅟a²))·⅟a".dParse.simplify(one));
//writeln("lim[ξ₁ → ∞](-⅟e^(ξ₁²·⅟a²))·⅟a".dParse.simplify(one));
//writeln("lim[ξ₁ → -∞]((d/dx)⁻¹[e^(-x²)](-10·⅟3·√3̅0̅+ξ₁·⅟√3̅0̅))²·e^(1000·⅟3)·√3̅0̅+-(d/dx)⁻¹[e^(-x²)](-20·⅟3·√1̅5̅+ξ₁·⅟√1̅5̅)·e^(-ξ₁²·⅟30+1000·⅟3+20·ξ₁·⅟3)·⅟√2̅".dParse.simplify(one));
//writeln("lim[ξ₁ → -∞](f(ξ₁)+g(ξ₁))".dParse.simplify(one));
//writeln("lim[ξ₁ → -∞](((d/dx)⁻¹[e^(-x²)](-10·⅟3·√3̅0̅+ξ₁·⅟√3̅0̅))²·e^(1000·⅟3)·√3̅0̅+-(d/dx)⁻¹[e^(-x²)](-20·⅟3·√1̅5̅+ξ₁·⅟√1̅5̅)·e^(-ξ₁²·⅟30+1000·⅟3+20·ξ₁·⅟3)·⅟√2̅)".dParse.simplify(one));
//writeln("∫da(-(d/dx)⁻¹[e^(-x²)](-10·⅟3·√3̅0̅+a·⅟√3̅0̅)·e^(1000·⅟3)·⅟√3̅0̅+e^(1000·⅟3)·⅟√3̅0̅·√π̅)".dParse.simplify(one));
//writeln("∫da [a≤b]·e^(-a²·⅟2+-b²·⅟2)".dParse.simplify(one));
//writeln("∫db(d/dx)⁻¹[e^(-x²)](b·⅟√2̅)·⅟e^(b²·⅟2)·√2̅".dParse.simplify(one));
//writeln("∫dx e^(-(x/√2̅)²)·[x≤b]".dParse.simplify(one));
//writeln(dDiff("b".dVar,"(d/dx)⁻¹[e^(-x²)](b·⅟√2̅)".dParse));
//writeln("∫dx e^(-x²)·x²·[x≤y]·[-y≤x]".dParse.simplify(one));
//writeln("∫dξ₁[-1+ξ₁≤0]·[-ξ₁≤0]·ξ₁⁸·⅟e^(ξ₁·⅟2)".dParse.simplify(one));
//writeln("(x-y)·[x=y]".dParse.simplify(one));
//writeln("(1+⅟(-x+1))".dParse.simplify(one));
//writeln("[2·√2̅+√3̅=0]".dParse.simplify(one));
//writeln("(∫dξ₁(∫dξ₂(∫dξ₃(-(∫dξ₄(∫dξ₅(d/dx)⁻¹[e^(-x²)](-ξ₄·⅟√3̅0̅+ξ₅·⅟√3̅0̅)·e^(-ξ₅²·⅟30+ξ₂·ξ₅·⅟15))·e^(-ξ₄²·⅟12+10·ξ₄+ξ₃·ξ₄·⅟15))·⅟20·√3̅0̅+3·e^(300+4·ξ₃+ξ₂²·⅟30+ξ₃²·⅟75)·π^(3·⅟2)·⅟2·√1̅2̅)·(d/dx)⁻¹[e^(-x²)](-ξ₁·⅟√3̅0̅+ξ₃·⅟√3̅0̅)·⅟e^(ξ₃²·⅟30))·(∫dξ₃(d/dx)⁻¹[e^(-x²)](-ξ₂·⅟√3̅0̅+ξ₃·⅟√3̅0̅)·e^(-ξ₃²·⅟30+ξ₁·ξ₃·⅟15))·e^(-ξ₂²·⅟12+10·ξ₂))·e^(-ξ₁²·⅟12+10·ξ₁))".dParse.simplify(one).killIntegrals());
//writeln("(∫dξ₃(d/dx)⁻¹[e^(-x²)](-ξ₂·⅟√3̅0̅+ξ₃·⅟√3̅0̅)·[0≤ξ₃]·[ξ₃≤1])".dParse.killIntegrals());
//e^(-ξ₃²·⅟30+ξ₁·ξ₃·⅟15)
//writeln("(∫dξ₃(d/dx)⁻¹[e^(-x²)](-ξ₂·⅟√3̅0̅+ξ₃·⅟√3̅0̅)·e^(-ξ₃²·⅟30+ξ₁·ξ₃·⅟15))".dParse.killIntegrals());
//writeln("∫dx((d/dx)⁻¹[e^(-x²)](x)·x·[0≤x]·[x≤y])".dParse.killIntegrals());
//writeln("(∫dξ₁(∫dξ₂(∫dξ₃(d/dx)⁻¹[e^(-x²)](-ξ₁·⅟√3̅0̅+ξ₃·⅟√3̅0̅)·(∫dξ₄(d/dx)⁻¹[e^(-x²)](-ξ₂·⅟√3̅0̅+ξ₄·⅟√3̅0̅)·e^((20·⅟7+2·ξ₃·⅟105)·ξ₄+-ξ₄²·⅟42))·e^(-ξ₃²·⅟42+20·ξ₃·⅟7))·(∫dξ₃(d/dx)⁻¹[e^(-x²)](-ξ₂·⅟√3̅0̅+ξ₃·⅟√3̅0̅)·e^(-ξ₃²·⅟30+ξ₁·ξ₃·⅟15))·e^(-ξ₂²·⅟20+10·ξ₂))·e^(-ξ₁²·⅟12+10·ξ₁))".dParse);
//writeln("(∫dξ₄(d/dx)⁻¹[e^(-x²)](-ξ₂·⅟√3̅0̅+ξ₄·⅟√3̅0̅)·e^((20·⅟7+2·ξ₃·⅟105)·ξ₄+-ξ₄²·⅟42))".dParse.killIntegrals());
//writeln("(∫dξ₁[-ξ₁+ξ₂≠0]·[-ξ₁+ξ₂≤0]·[ξ₁≤0]·e^((20·⅟7+2·ξ₃·⅟105)·ξ₁+-ξ₁²·⅟42)·ξ₁²)".dParse.simplify(one));
//writeln("∫dξ₁(-e^((20·⅟7+2·ξ₃·⅟105)·ξ₁+-ξ₁²·⅟42)·ξ₁²·⅟30+e^((20·⅟7+2·ξ₃·⅟105)·ξ₁+-ξ₁²·⅟42)·ξ₁·ξ₂·⅟15)".dParse.killIntegrals());
//writeln("(∫dξ₂(d/dx)⁻¹[e^(-x²)](-ξ₁·⅟√3̅0̅+ξ₂·⅟√3̅0̅)·e^(-ξ₂²·⅟50+4·ξ₂))".dParse.killIntegrals());
//writeln("1/(∫dξ₁(∫dξ₂(d/dx)⁻¹[e^(-x²)](-ξ₁·⅟√3̅0̅+ξ₂·⅟√3̅0̅)·e^(-ξ₂²·⅟50+4·ξ₂))·e^(-ξ₁²·⅟20+10·ξ₁))".dParse.killIntegrals());
//writeln("(∫dξ₁(-(d/dx)⁻¹[e^(-x²)](-skill1·⅟√3̅0̅+ξ₁·⅟√3̅0̅)·e^(skill1²·⅟30)·⅟600·√3̅0̅+e^(skill1²·⅟30)·⅟600·√3̅0̅·√π̅)·(d/dx)⁻¹[e^(-x²)](-skill1·⅟√3̅0̅+ξ₁·⅟√3̅0̅)·e^(-ξ₁²·⅟30+skill2·ξ₁·⅟15))".dParse.killIntegrals());
//writeln("(∫dξ₁(∫dξ₂(-(d/dx)⁻¹[e^(-x²)](-ξ₁·⅟√3̅0̅+ξ₂·⅟√3̅0̅)·e^(ξ₁²·⅟30)·⅟600·√3̅0̅+e^(ξ₁²·⅟30)·⅟600·√3̅0̅·√π̅)·(d/dx)⁻¹[e^(-x²)](-ξ₁·⅟√3̅0̅+ξ₂·⅟√3̅0̅)·e^(-ξ₂²·⅟50+4·ξ₂))·e^(-ξ₁²·⅟12+10·ξ₁))".dParse.killIntegrals());
//writeln("(∫dξ₁(-(d/dx)⁻¹[e^(-x²)](-skill1·⅟√3̅0̅+ξ₁·⅟√3̅0̅)·e^(skill1²·⅟30)·⅟600·√3̅0̅+e^(skill1²·⅟30)·⅟600·√3̅0̅·√π̅)·(d/dx)⁻¹[e^(-x²)](-skill1·⅟√3̅0̅+ξ₁·⅟√3̅0̅)·e^(-ξ₁²·⅟30+skill2·ξ₁·⅟15))·e^(-300+-skill1²·⅟12+-skill2²·⅟12+10·skill1+10·skill2)·⅟(∫dξ₁(∫dξ₂(-(d/dx)⁻¹[e^(-x²)](-ξ₁·⅟√3̅0̅+ξ₂·⅟√3̅0̅)·e^(ξ₁²·⅟30)·⅟600·√3̅0̅+e^(ξ₁²·⅟30)·⅟600·√3̅0̅·√π̅)·(d/dx)⁻¹[e^(-x²)](-ξ₁·⅟√3̅0̅+ξ₂·⅟√3̅0̅)·e^(-ξ₂²·⅟50+4·ξ₂))·e^(-ξ₁²·⅟12+10·ξ₁))·⅟√1̅2̅·⅟√π̅".dParse.killIntegrals());
//writeln("(∫dξ₁(-4·⅟3+4·e^(-20·ξ₁²+-600)·⅟3)·[ξ₁≤0]·e^(-ξ₁²·⅟50+4·ξ₁)·ξ₁)".dParse.killIntegrals());
//writeln("∫dξ₁(-4·[ξ₁≤0]·e^(-ξ₁²·⅟50+4·ξ₁)·ξ₁)".dParse.killIntegrals());
//writeln("∫dξ₁(e^(-ξ₁²·⅟50+4·ξ₁)·ξ₁)".dParse.simplify(one));
//writeln("lim[tmp→ -∞](-100·√5̅0̅+-50·tmp·√5̅0̅)·(d/dx)⁻¹[e^(-x²)](2·√5̅0̅+tmp·√5̅0̅)".dParse.simplify(one));
//writeln("(∫dξ₁(d/dx)⁻¹[e^(-x²)](-skillB·⅟√3̅0̅+ξ₁·⅟√3̅0̅)·e^(-ξ₁²·⅟30+skillC·ξ₁·⅟15))".dParse.simplify(one));
//writeln("(∫dξ₁[ξ₁≤0]·e^(-ξ₁²·⅟50+4·ξ₁)·ξ₁²)".dParse.simplify(one));
//auto r=dDiff("x".dVar,dInt("tmp".dVar,"[tmp≤x]".dParse*"(d/dx)⁻¹[e^(-x²)](-2·√5̅0̅+tmp·⅟√5̅0̅)".dParse)).simplify(one); // TODO: simplify better!
//writeln(r);
//auto r=dIntSmp("tmp".dVar,"[tmp≤x]".dParse*"(d/dx)⁻¹[e^(-x²)](-2·√5̅0̅+tmp·⅟√5̅0̅)".dParse);
//matlabPlot(r.toString(),"x");
//writeln(dDiff("x".dVar,"1/2·(x·(2·(d/dx)⁻¹[e^(-x²)](x)-1)+e^(-x²)+x)".dParse).simplify(one));
//writeln(dDiff("x".dVar,dIntSmp("y".dVar,"(d/dx)⁻¹[e^(-x²)](a·y+b)·[y≤x]".dParse)).simplify(one));
//writeln(dDiff("x".dVar,"⅟a·((a·x+b)·(d/dx)⁻¹[e^(-x²)](a·x+b)+e^(-(a·x+b)²)/2)".dParse).simplify(one));
//writeln(dDiff("x".dVar,"(d/dx)⁻¹[e^(-x²)](x)·x-e^(-x²))".dParse));
//auto r="∫dy[0≤y]·[y≤x]·y³·e^(-y²)".dParse.simplify(one);
//auto r="x²·e^(-x²)".dParse;
//r=r.polyNormalize("x".dVar).simplify(one);
//writeln(r);
//writeln(dDiff("x".dVar,"-(d/dx)⁻¹[e^(-x²)](x)·24·x⁵·⅟11+-(d/dx)⁻¹[e^(-x²)](x)·50·x³·⅟11+-35·x⁴·⅟22·⅟e^(x²)+-60·x²·⅟11·⅟e^(x²)+-60·⅟11·⅟e^(x²)+60·⅟11".dParse).simplify(one));
//writeln(dDiff("x".dVar,tryGetAntiderivative("x".dVar,"x²·e^(-x²)".dParse,one).antiderivative).simplify(one));
//matlabPlot(r.toString(Format.matlab),"x");
//writeln("∫dx(d/dx)⁻¹[e^(-x²)](x)·x".dParse.simplify(one));
//writeln("(∫dξ₁ ξ₁²·⅟e^(ξ₁²·⅟200))".dParse.simplify(one));
//writeln("1/(-2·a⁴·⅟3+2·a)·∫dx (1-a·x²)·[-a≤x]·[x≤a]".dParse.simplify("[0≤a]".dParse));
//writeln("∫dx (1-a²·(x-b/a)²)·[-a²≤x-b/a]·[x-b/a≤a²]".dParse.simplify("[0≤a]".dParse));
//writeln("3/(4·5^(1/2))·∫dx (1-x²/5)·x²·[-5^(1/2)≤x]·[x≤5^(1/2)]".dParse.simplify(one));
//writeln((-dVar("x"))^^(one/2));
//writeln("(∫dξ₁[-1+√ξ̅₁̅≤0]·[-ξ₁≤0]·[ξ₁≠0]·⅟(-2·[√ξ̅₁̅≠0]·[√ξ̅₁̅≤0]·√ξ̅₁̅+2·√ξ̅₁̅)+∫dξ₁[-1+√ξ̅₁̅≤0]·[-ξ₁≤0]·⅟(-2·[√ξ̅₁̅≠0]·[√ξ̅₁̅≤0]·√ξ̅₁̅+2·√ξ̅₁̅))".dParse);
//writeln("-2·[√ξ̅₁̅≠0]·[√ξ̅₁̅≤0]·√ξ̅₁̅+2·√ξ̅₁̅".dParse.simplify("[√ξ̅₁̅≤0]".dParse));
//writeln("[√ξ̅₁̅≤0]".dParse.simplify(one));
//writeln(DExpr.simplifyCache);
//writeln("(2·x·π)^(⅟2)".dParse);
/*writeln(linearizeConstraints("[1/x+1≤0]".dParse,"x".dVar));
writeln(linearizeConstraints("[x²≤1]".dParse,"x".dVar));
writeln(linearizeConstraints("[-x²=1]".dParse,"x".dVar));
writeln(linearizeConstraints("[x²=1]·[x≤0]".dParse,"x".dVar).polyNormalize("x".dVar));
writeln(linearizeConstraints("[x³=-1]".dParse,"x".dVar));
writeln(linearizeConstraints("[x³≤1]".dParse,"x".dVar));
writeln(linearizeConstraints("[x³≤-1]".dParse,"x".dVar));
writeln(linearizeConstraints("[x²+x+1≤10]".dParse,"x".dVar));
writeln(linearizeConstraints("[-1-x²≤0]".dParse,"x".dVar));
writeln(linearizeConstraints("[-1-x-x²≤0]".dParse,"x".dVar));
writeln(linearizeConstraints("[x²=0]".dParse,"x".dVar));
writeln("(-3)^(1/2)".dParse);*/
//writeln(linearizeConstraints("[1/10-1/(x²+x+1)≤0]".dParse,"x".dVar));
//writeln("[1/10-1/(x²+x+1)≤0]".dParse);
//writeln("[-1/10+1/(x²+x+1)≤0]".dParse);
//writeln(linearizeConstraints("[-1/10+1/(x²+x+1)≤0]".dParse,"x".dVar));
//writeln(splitPlusAtVar("-1+10·⅟(1+x+x²)".dParse,"x".dVar));
//writeln(linearizeConstraints("[(x-1)^2<=0]".dParse,"x".dVar));
//writeln(linearizeConstraints("[(x-1)^2!=0]".dParse,"x".dVar));
//writeln(linearizeConstraints("[y*x^2+x<=0]".dParse,"x".dVar).polyNormalize("x".dVar).simplify(one)); // TODO: check correctness
//writeln(linearizeConstraints("[y*x^2+x=0]".dParse,"x".dVar).polyNormalize("x".dVar).simplify(one));
//writeln(linearizeConstraints("[y*x^2+x!=0]".dParse,"x".dVar).polyNormalize("x".dVar).simplify(one));
//writeln(linearizeConstraints("[a*x^2+b*x+c=0]".dParse,"x".dVar));
//writeln(linearizeConstraints("[a*x^2+b*x+c<=0]".dParse,"x".dVar));
//writeln("[x^2+y^2=1]*[x^2+y^2=2]".dParse.simplify(one)); // TODO: this should be simplified!
//writeln(linearizeConstraints("[x^2+y^2=1]".dParse,"x".dVar));
//writeln(linearizeConstraints("δ[(x-1)*(2*x-4)]".dParse,"x".dVar));
//writeln(linearizeConstraints("[1/(x^2+x+1)<=10]".dParse,"x".dVar));
//writeln(linearizeConstraints("[x^2+x+1<=1]".dParse,"x".dVar));
//writeln(linearizeConstraints("[x^2+x+1<=0]".dParse,"x".dVar));
//writeln(linearizeConstraints("δ[x/(1+x)]".dParse,"x".dVar));
//writeln(linearizeConstraints("δ[x^2-25]".dParse,"x".dVar));
//writeln(linearizeConstraints("δ[-c+100000032000004800000448000029120001397760051251201464320032947200585728008200192089456640745472004587520019660800052428800065536·c₁¹⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰]·⅟π".dParse,"c₁".dVar));
//writeln("∫dx [0≤x]·[x≤y]·x^100000000000000".dParse.simplify(one));
//writeln("∫dx e^(-a·x^2+b·x+c)·[0≤x]·[x≤k]".dParse.simplify(one));
//writeln("∫dy(∫dξ₁[-ξ₁≤0]·[ξ₁≠0]·e^(-y²·⅟2·⅟ξ₁+-ξ₁²·⅟2)·⅟√ξ̅₁̅)".dParse.simplify(one));
//writeln(linearizeConstraints("δ[-x+u·y]".dParse,"y".dVar).simplify(one));
//writeln(linearizeConstraints("[y≠0]·δ[x·⅟y]".dParse,"y".dVar).simplify(one));
//writeln("∫dy[y≠0]·δ[x·⅟y]".dParse); // TODO: meaning?
//writeln("∫dx ((([-x+√-̅y̅²̅+̅1̅≤0]·⅟4+[x+√-̅y̅²̅+̅1̅≤0]·⅟4)·[-1+y²≤0]·[-y²+1≠0]+[-y²+1≤0]·⅟4)·([-1+y²≤0]·[-√-̅y̅²̅+̅1̅+x≠0]·[x+√-̅y̅²̅+̅1̅≠0]+[-y²+1≠0]·[-y²+1≤0])·δ[z]+[-1+y²≤0]·[-x+-√-̅y̅²̅+̅1̅≤0]·[-√-̅y̅²̅+̅1̅+x≤0]·δ[-z+1]·⅟4)·[-1+-x≤0]·[-1+-y≤0]·[-1+x≤0]·[-1+y≤0]".dParse.simplify(one).polyNormalize("y".dVar));
//writeln("∫dy [-1+-y≤0]·[-1+y²≤0]·[-1+y≤0]·[-1+√-̅y̅²̅+̅1̅≤0]·δ[-z+1]·⅟2·√-̅y̅²̅+̅1̅".dParse.simplify(one));
//writeln("∫dy [-1+-y≤0]·[-1+y≤0]·[-y²+1≤0]·δ[z]·⅟2".dParse.simplify(one));
/+auto larger="δ[z]·[[x²+y²<=1]=0]·[0≤x]·[0≤y]·[x≤1]·[y≤1]".dParse.simplify(one);
auto lin=linearizeConstraints(larger,"x".dVar).simplify(one);
writeln(lin.polyNormalize("x".dVar));
auto ii=dInt("x".dVar,lin).simplify(one);
writeln(ii);
auto jj=dInt("y".dVar,ii).simplify(one);
writeln(jj);+/
//auto x0="∫dx ((([-x+√-̅y̅²̅+̅1̅≤0]·⅟4+[x+√-̅y̅²̅+̅1̅≤0]·⅟4)·[-1+y²≤0]·[-y²+1≠0]+[-y²+1≤0]·⅟4)·([-1+y²≤0]·[-√-̅y̅²̅+̅1̅+x≠0]·[x+√-̅y̅²̅+̅1̅≠0]+[-y²+1≠0]·[-y²+1≤0])·δ[z]+[-1+y²≤0]·[-x+-√-̅y̅²̅+̅1̅≤0]·[-√-̅y̅²̅+̅1̅+x≤0]·δ[-z+1]·⅟4)·[-1+-x≤0]·[-1+-y≤0]·[-1+x≤0]·[-1+y≤0]".dParse.simplify(one).polyNormalize("y".dVar);
//auto dz="-[-1+-y≤0]·[-1+-√-̅y̅²̅+̅1̅=0]·[-1+y²≤0]·[-1+y≤0]·[-y²+1≠0]·δ[z]·⅟2·√-̅y̅²̅+̅1̅+-[-1+-y≤0]·[-1+y²≤0]·[-1+y≤0]·[-1+√-̅y̅²̅+̅1̅≤0]·[-y²+1≠0]·[1+√-̅y̅²̅+̅1̅≠0]·δ[z]·⅟2·√-̅y̅²̅+̅1̅+3·[-1+-y≤0]·[-1+y²≤0]·[-1+y≤0]·[-y²+1≠0]·[1+√-̅y̅²̅+̅1̅≠0]·[1+√-̅y̅²̅+̅1̅≤0]·δ[z]·⅟2+[-1+-y≤0]·[-1+-√-̅y̅²̅+̅1̅=0]·[-1+y²≤0]·[-1+y≤0]·[-y²+1≠0]·δ[z]·⅟2+[-1+-y≤0]·[-1+y²≤0]·[-1+y≤0]·[-1+√-̅y̅²̅+̅1̅≤0]·[-y²+1≠0]·[1+√-̅y̅²̅+̅1̅≠0]·δ[z]·⅟2+[-1+-y≤0]·[-1+y≤0]·[-y²+1≤0]·δ[z]·⅟2".dParse.simplify(one);
//auto x1=linearizeConstraints(dz,"y".dVar);
//writeln(dInt("y".dVar,x1).simplify(one));
//writeln(linearizeConstraints("[-1+-y≤0]·[-1+y²≤0]·[-1+y≤0]·[-1+√-̅y̅²̅+̅1̅≤0]·[-y²+1≠0]·[1+√-̅y̅²̅+̅1̅≠0]".dParse,"y".dVar));
//auto xyz="([-1+x²+y²≤0]·δ[-z+1]·⅟4+[-x²+-y²+1≠0]·[-x²+-y²+1≤0]·δ[z]·⅟4)·[-1+-x≤0]·[-1+-y≤0]·[-1+x≤0]·[-1+y≤0]".dParse;
//auto xyz="([-x²+-y²+1≠0]·[-x²+-y²+1≤0]·δ[z]·⅟4)·[-1+-x≤0]·[-1+-y≤0]·[-1+x≤0]·[-1+y≤0]".dParse;
//auto xyz="[-1<=x]*[x<=1]*[-1<=y]*[y<=1]*[-x²+-y²+1≤0]".dParse;
//writeln(xyz.linearizeConstraints("x".dVar).simplify(one));
//auto yz=dIntSmp("x".dVar,xyz);
//auto yz="(([-1+-√-̅y̅²̅+̅1̅≠0]·[1+√-̅y̅²̅+̅1̅≤0]·⅟2)·(-[-1+-√-̅y̅²̅+̅1̅≠0]·[-1+-√-̅y̅²̅+̅1̅≤0]·√-̅y̅²̅+̅1̅+1+[1+√-̅y̅²̅+̅1̅≤0])·[-1+y²≤0]·[-y²+1≠0]+([-1+y²≤0]·⅟2+[-y²+1≠0]·⅟2)·[-y²+1≤0])·[-1+-y≤0]·[-1+y≤0]·δ[z]".dParse;
//auto yz="(((2·[-1+-√-̅y̅²̅+̅1̅≠0]·[-1+√-̅y̅²̅+̅1̅≤0]+2·[1+√-̅y̅²̅+̅1̅=0])·[-1+-√-̅y̅²̅+̅1̅≤0]+2·[-1+-√-̅y̅²̅+̅1̅≠0]·[1+√-̅y̅²̅+̅1̅≤0])·(-[-1+-√-̅y̅²̅+̅1̅≠0]·[-1+-√-̅y̅²̅+̅1̅≤0]·√-̅y̅²̅+̅1̅+1+[1+√-̅y̅²̅+̅1̅≤0])·[-1+y²≤0]·[-y²+1≠0]+2·[-y²+1≤0])·[-1+-y≤0]·[-1+y≤0]".dParse;
//auto yz="[-1≤√-̅y̅²̅+̅1̅]".dParse;
//writeln(yz.linearizeConstraints("y".dVar));
//writeln(dIntSmp("y".dVar,yz));
//auto e="δ[-a₁+⅟k]".dParse;
//auto lin=e.linearizeConstraints("k".dVar);
//writeln(dIntSmp("k".dVar,e*"[0<=k]*[k<=x]".dParse));
//writeln("[a+⅟k≠0]".dParse.linearizeConstraints("k".dVar));
//writeln("[a+⅟b<=0]".dParse.linearizeConstraints("b".dVar).polyNormalize("a".dVar).simplify(one));
//writeln("[-a-⅟b<=0]".dParse.linearizeConstraints("b".dVar).polyNormalize("a".dVar).simplify(one));
/*import dparse;
auto good="(2·δ[-a₂+⅟k]·⅟3+δ[a₂]·⅟3)·(2·δ[a₁]·⅟3+δ[-a₁+⅟k]·⅟3)·(δ[-1+k]·⅟3+δ[-2+k]·⅟3+δ[-3+k]·⅟3)·[-1+a₁+a₂+⅟k≠0]·[k≠0]·δ[-a₃+⅟k]"
auto middle="(2·[a₂≠0]·δ[-⅟a₂+k]·⅟3·⅟a₂²+δ[a₂]·⅟3)·(2·δ[a₁]·⅟3+[a₁≠0]·δ[-⅟a₁+k]·⅟3·⅟a₁²)·(δ[-1+k]·⅟3+δ[-2+k]·⅟3+δ[-3+k]·⅟3)·[-1+a₁+a₂+⅟k≠0]·[a₃≠0]·[k≠0]·δ[-⅟a₃+k]·⅟a₃²";
auto bad="(2·[a₂≠0]·δ[-⅟a₂+k]·⅟3·⅟a₂²+δ[a₂]·⅟3)·(2·δ[a₁]·⅟3+[a₁≠0]·δ[-⅟a₁+k]·⅟3·⅟a₁²)·(δ[-1+k]·⅟3+δ[-2+k]·⅟3+δ[-3+k]·⅟3)·[-a₁+-a₂+1≠0]·[-⅟(-a₁+-a₂+1)+k≠0]·[a₃≠0]·[k≠0]·δ[-⅟a₃+k]·⅟a₃²";
if(nexpr.toString() == good){
writeln("!!!");
nexpr=middle.dParse;
}*/
//auto d="(δ[-x+1]·⅟2+δ[x]·⅟2)·δ[-y+x²]".dParse;
//writeln(d.linearizeConstraints("x".dVar));
//auto d="δ[x^(1/2)-y]".dParse;
/*auto x="δ[x-y²]".dParse;
writeln("orig: ",x);
auto d=x.linearizeConstraints("y".dVar).simplify(one);
writeln("liny: ",d);
auto k=d.linearizeConstraints("x".dVar).simplify(one);
writeln("linx: ",k);
auto j=k.linearizeConstraints("y".dVar).simplify(one);
writeln("liny: ",j);
writeln("linx: ",j.linearizeConstraints("x".dVar).simplify(one)); // TODO: implement suitable simplification rules such that this is δ[x-y²] and d=j*/
/*auto x="δ[z-x*y]".dParse;
writeln(x.linearizeConstraints("x".dVar));
writeln(dIntSmp("x".dVar,x*"f(x,y,z)".dParse));*/
/*auto x="δ[x/y]".dParse;
writeln(x.linearizeConstraints("x".dVar));
writeln(x.linearizeConstraints("y".dVar));
writeln(dIntSmp("x".dVar,x*"f(x,y)*[y!=0]".dParse).simplify(one));*/
//writeln("([6+√1̅2̅≤0]·[2+√1̅2̅≤0])^-1)".dParse);
//writeln("δ[y-x·(x+1)]".dParse.linearizeConstraints("x".dVar).simplify(one));
//writeln("Msum(a,Msum(b,c))".dParse.substituteFun("Msum".dFunVar,"a+b".dParse,["a".dVar,"b".dVar]));
//writeln("Msum(W(a,Msum(b,c),Msum(a,b,c)),d)".dParse.substituteFun("Msum".dFunVar,"x+y".dParse,["x".dVar,"y".dVar]));
/*auto e="-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_0₂+1]·δ[-sim_1₁+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_1₁+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_0₂+1]·δ[-sim_1₁+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_1₁+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₂+1]·δ[-sim_1₁+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_0₂+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₂+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₂+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_1₁+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₂+1]·δ[-sim_1₁+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_0₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_1₁+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_0₂+1]·δ[-sim_1₁+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_1₁+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_1₁+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₂+1]·δ[-sim_1₁+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_1₁+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_0₂+1]·δ[-sim_1₁+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₂+1]·δ[-sim_1₁+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₁]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36+-[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_1₂+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₁]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟12+[-1+similarityAll≤0]·[-similarityAll≤0]·similarityAll²·δ[-clicks_0₁+1]·δ[-clicks_0₂+1]·δ[-clicks_0₃+1]·δ[-clicks_1₁+1]·δ[-clicks_1₂+1]·δ[-clicks_1₃+1]·δ[-i+1]·δ[-sim_0₁+1]·δ[-sim_1₁+1]·δ[clicks_0₄]·δ[clicks_0₅]·δ[clicks_1₄]·δ[clicks_1₅]·δ[sim_0₂]·δ[sim_0₃]·δ[sim_0₄]·δ[sim_0₅]·δ[sim_1₂]·δ[sim_1₃]·δ[sim_1₄]·δ[sim_1₅]·⅟36".dParse;
import std.datetime;
StopWatch sw;
sw.start();
e=e.simplify(one);
sw.stop();
writeln(sw.peek().to!("seconds",double));
dw(e);*/
/*auto expr="((-mean₁·⅟3141+1)·δ[answer₁]+mean₁·δ[-answer₁+1]·⅟3141)·((-mean₁·⅟3141+1)·δ[answer₃]+mean₁·δ[-answer₃+1]·⅟3141)·((-mean₁·⅟3141+1)·δ[answer₄]+mean₁·δ[-answer₄+1]·⅟3141)·((-mean₂·⅟2718+1)·δ[answer₅]+mean₂·δ[-answer₅+1]·⅟2718)·(-mean₂·⅟2718+1)·([variance₁=0]·δ[-mean₁+votes₁]+[variance₁≠0]·e^((-mean₁²·⅟2+-votes₁²·⅟2+mean₁·votes₁)·⅟variance₁)·⅟√2̅·⅟√v̅a̅r̅i̅a̅n̅c̅e̅₁̅·⅟√π̅)·([variance₂=0]·δ[-mean₂+votes₂]+[variance₂≠0]·e^((-mean₂²·⅟2+-votes₂²·⅟2+mean₂·votes₂)·⅟variance₂)·⅟√2̅·⅟√v̅a̅r̅i̅a̅n̅c̅e̅₂̅·⅟√π̅)·[-2718+mean₂≤0]·[-3141+mean₁≤0]·[-answer₁+1=0]·[-answer₃+1=0]·[-answer₄+1=0]·[-answer₅+1=0]·[-mean₁≤0]·[-mean₂≤0]·[-variance₁≤0]·[-variance₂≤0]·δ[-ansBias₁+bias₁]·δ[-ansBias₂+bias₂]·δ[-ansBias₃+bias₁]·δ[-ansBias₄+bias₁]·δ[-ansBias₅+bias₂]·δ[-bias₁·mean₁+-variance₁+mean₁]·δ[-bias₂·mean₂+-variance₂+mean₂]·δ[-mean₁+3141·bias₁]·δ[-mean₂+2718·bias₂]·δ[answer₂]".dParse;
auto expr1=dIntSmp("mean₁".dVar,expr);
auto expr2=dIntSmp("bias₁".dVar,expr1);
auto expr3=dIntSmp("ansBias₃".dVar,expr2);
auto expr4=dIntSmp("ansBias₁".dVar,expr3);
auto expr5=dIntSmp("ansBias₄".dVar,expr4);
auto expr6=dIntSmp("variance₁".dVar,expr5);
auto expr7=dIntSmp("votes₁".dVar,expr6);
auto expr8=dIntSmp("mean₂".dVar,expr7);
auto expr9=dIntSmp("variance₂".dVar,expr8);
auto expr10=dIntSmp("votes₂".dVar,expr9);
auto expr11=dIntSmp("answer₁".dVar,expr10);
auto expr12=dIntSmp("answer₂".dVar,expr11);
auto expr13=dIntSmp("answer₃".dVar,expr12);
auto expr14=dIntSmp("answer₅".dVar,expr13);
auto expr15=dIntSmp("ansBias₂".dVar,expr14);
auto expr16=dIntSmp("ansBias₅".dVar,expr15);
auto expr17=dIntSmp("answer₄".dVar,expr16);
//dw(expr16);
//dw(expr17);
auto foo="(∫dξ₁(∫dξ₂((-⅟17074476·√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅+⅟5436)·δ[answer₄])·(-ξ₂·⅟3141+⅟2+⅟6282·√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅)·[-3141+4·ξ₂≤0]·[-3141+√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅≤0]·[-4·ξ₂+3141≠0]·[-ξ₂≤0]·[ξ₂≠0]·e^(((3141·⅟2+⅟2·√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅)·ξ₁+-3141·⅟4·√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅+-9865881·⅟4+-ξ₁²·⅟2+3141·ξ₂·⅟2)·⅟ξ₂)·⅟√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅·⅟√ξ̅₂̅+∫dξ₂((349·⅟302+⅟2718·√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅)·δ[answer₄])·(-ξ₂·⅟19731762+-⅟39463524·√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅+⅟12564)·[-3141+4·ξ₂≤0]·[-3141+√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅≤0]·[-4·ξ₂+3141≠0]·[-ξ₂≤0]·[ξ₂≠0]·e^(((-⅟2·√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅+3141·⅟2)·ξ₁+-9865881·⅟4+-ξ₁²·⅟2+3141·ξ₂·⅟2+3141·⅟4·√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅)·⅟ξ₂)·⅟√-̅1̅2̅5̅6̅4̅·̅ξ̅₂̅+̅9̅8̅6̅5̅8̅8̅1̅₂̅))·[-answer₄+1=0]".dParse;
dw(dIntSmp("answer₄".dVar,foo));*/
//auto bar="∫dx(∫dξ₁∫dξ₂ (δ[x]/(ξ₁^2+ξ₂^2)+δ[x]/(ξ₁^3+ξ₂^3))+∫dξ₁∫dξ₂ (δ[x]/(ξ₁^2+ξ₂^3)+δ[x]/(ξ₁^3+ξ₂^2)))*[x=0]".dParse.simplify(one);
//writeln(bar);// ∫dξ₁∫dξ₂ 1/(ξ₁^2+ξ₂^2)
//writeln("∫dx∫dy [1/x+y≤0]".dParse.simplify(one));
//writeln("∫dx (1/x^(1/2)+-x/x^(1/2))·[0≤x]·[x≤1]".dParse.simplify(one));
//writeln("[-2+⅟y≤0]·[-⅟y+1≤0]·[y≠0]·⅟y²".dParse.linearizeConstraints("y".dVar).simplify(one));
/+writeln("∫dy log(y)^(-2)·[0<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)^(-1)·[0<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)·[0<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)²·[0<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)³·[0<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)³·[0<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)⁴·[0<y]·[y≤x]".dParse.simplify(one));+/
/+writeln("∫dy log(y)^(-2)/y·[1/100<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)^(-1)/y·[1/100<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)/y·[1/100<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)²/y·[1/100<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)³/y·[1/100<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)³/y·[1/100<y]·[y≤x]".dParse.simplify(one));
writeln("∫dy log(y)⁴/y·[1/100<y]·[y≤x]".dParse.simplify(one));+/
//auto e="[-1+-x≤0]·[-1+-y≤0]·[-1+x≤0]·[-1+y≤0]·[y≠0]·δ[-z+x·⅟y]·⅟4".dParse;
/+auto e1=dIntSmp("y".dVar,e).simplify(one);
auto e2=dIntSmp("x".dVar,e1).simplify(one);
writeln(e2);+/
//writeln("∫dξ₁[-ξ₁≤0]·ξ₁⁶·⅟e^ξ₁".dParse.simplify(one));
//writeln("lim[ξ₁ → ∞](-120·ξ₁³·⅟e^ξ₁+-360·ξ₁²·⅟e^ξ₁+-720·ξ₁·⅟e^ξ₁+-720·⅟e^ξ₁+-30·ξ₁⁴·⅟e^ξ₁+-6·ξ₁⁵·⅟e^ξ₁+-ξ₁⁶·⅟e^ξ₁)".dParse.simplify(one));
//writeln("∫dy(((((((([-1+a=0]+[-1+a≠0]·[-a≤0])·[-1+a≤0]+[-1+a≠0]·[-a+1≤0])·[(-a·⅟y+1)·y=0]+([(-1+a·⅟y)·y+-1≤0]·[-1+a≠0]·[-a+1≤0]+[-1+a≤0])·[(-a·⅟y+1)·y≠0])·[(-a·⅟y+1)·y≤0]+(([-1+a=0]+[-1+a≠0]·[-a≤0])·[-1+a≤0]+[-1+a≠0]·[-a+1≤0])·[(-1+a·⅟y)·y≤0]·[(-a·⅟y+1)·y≠0])·((-a·⅟y+1)·[(-a·⅟y+1)·y≠0]·[(-a·⅟y+1)·y≤0]·y+[-1+a≠0]·[-1+a≤0]·a+[-a+1≤0])·[-⅟y≤0]+((-[(-1+a·⅟y)·y≤0]·[(-a·⅟y+1)·y≠0]·[-a≤0]+-[(-a·⅟y+1)·y≤0])·a+1)·(([-1+a≤0]·[-a≤0]+[a≠0]·[a≤0])·[(-1+a·⅟y)·y≤0]·[(-a·⅟y+1)·y≠0]+[(-a·⅟y+1)·y≤0]·[-1+a≤0])·[[-⅟y≤0]=0])·[[⅟y≤0]=0]+(((([(-1+a·⅟y)·y+-1=0]·[-1+a≤0]+[(-1+a·⅟y)·y+-1≠0]·[(-a·⅟y+1)·y+a≤0])·[(-1+a·⅟y)·y+-1≤0]+[(-1+a·⅟y)·y+-1≠0]·[(-a·⅟y+1)·y+1≤0]·[-1+a≤0])·[a≠0]+[1+y=0]·[a=0])·[-a≤0]+(([(-1+a·⅟y)·y+-1=0]+[(-1+a·⅟y)·y+-1≠0]·[(-a·⅟y+1)·y≤0])·[(-1+a·⅟y)·y+-1≤0]+[(-1+a·⅟y)·y+-1≠0]·[(-a·⅟y+1)·y+1≤0])·[a≠0]·[a≤0])·((-1+a·⅟y)·[(-1+a·⅟y)·y+-1≠0]·[(-1+a·⅟y)·y+-1≤0]·y+-[-a≤0]·[a≠0]·a+[(-a·⅟y+1)·y+1≤0])·[[-⅟y≤0]=0]·[⅟y≤0])·[y≠0]·⅟y))".dParse.simplify(one));
//writeln("(∫dx[(-1+a·⅟x)·x+-1≤0]·[(-a·⅟x+1)·x≠0]·[(-a·⅟x+1)·x≤0]·[[⅟x≤0]=0]·[x≠0])·[-1+a≠0]·[-a+1≤0]+(∫dx[(-1+a·⅟x)·x+-1≤0]·[(-a·⅟x+1)·x≠0]·[(-a·⅟x+1)·x≤0]·[[⅟x≤0]=0]·[x≠0]·⅟x)·[-1+a≠0]·[-a+1≤0]+-(∫dx[(-1+a·⅟x)·x+-1≤0]·[(-a·⅟x+1)·x≠0]·[(-a·⅟x+1)·x≤0]·[[⅟x≤0]=0]·[x≠0]·⅟x)·[-1+a≠0]·[-a+1≤0]·a".dParse.simplify(one));
//writeln(dIntSmp("x".dVar,"[(-1+a·⅟x)·x+-1≤0]·[(-a·⅟x+1)·x≠0]·[(-a·⅟x+1)·x≤0]·[[⅟x≤0]=0]·[x≠0]·[-1+a≠0]·[-a+1≤0]".dParse.linearizeConstraints("x".dVar)));
//writeln(dIntSmp("x".dVar,"[(-1+a·⅟x)·x+-1≤0]·[(-a·⅟x+1)·x≠0]·[(-a·⅟x+1)·x≤0]·[[⅟x≤0]=0]·[x≠0]·[-1+a≠0]·[-a+1≤0]".dParse.linearizeConstraints("x".dVar)));
//writeln(dGamma(dℤ(5+1)).simplify(one));
//writeln(dBeta(dℤ(5+1),dℤ(6+1)).simplify(one));
//writeln((dGamma(dℤ(5+1))*dGamma(dℤ(6+1))/dGamma(dℤ(5+1+6+1))).simplify(one));
//writeln(studentTPDF("x".dVar,7.dℤ));
//writeln(dIntSmp("x".dVar,weibullPDF("x".dVar,1.dℤ,3.dℤ)).toString(Format.mathematica)); // TODO: this should be 1
//writeln("!! ","[0<1/x]".dParse.simplify(one));
//writeln("[⅟x≤0]".dParse.factorDIvr!(e=>dFun("f".dFunVar,[e])));
//writeln("[1/x!=0]".dParse.simplify(one));
//writeln("[x=0]".dParse.factorDIvr!(e=>dFun("f".dFunVar,[e])));
//writeln("lim[x→ -∞] 1/x".dParse.simplify(one));
/+DExpr parseHakaru(string s){
return s.dParse.substituteFun("Msum".dFunVar,"a+b".dParse,["a".dVar,"b".dVar]).substituteFun("Msum".dFunVar,"a".dVar,["a".dVar]).substituteFun("Msum".dFunVar,"a+b+c".dParse,["a".dVar,"b".dVar,"c".dVar]).substituteFun("Weight".dFunVar,"a*b".dParse,["a".dVar,"b".dVar]).substituteFun("Msum".dFunVar,"a+b+c+d".dParse,["a".dVar,"b".dVar,"c".dVar,"d".dVar]).substituteFun("Msum".dFunVar,"a+b+c+d+e".dParse,["a".dVar,"b".dVar,"c".dVar,"d".dVar,"e".dVar]).substituteFun("Msum".dFunVar,"a+b+c+d+k+f".dParse,["a".dVar,"b".dVar,"c".dVar,"d".dVar,"k".dVar,"f".dVar]).polyNormalize("x".dVar).substituteFun("Ret".dFunVar,one,["a".dVar]);
}+/
//writeln(parseHakaru("Msum(Weight(x,Msum(Weight(1/3*x,Msum(Weight(1/3*x,Msum(Weight(1/3*x,Msum(Weight(1/9*x,Ret(x)),Weight(5/36-5/36*x,Ret(x)))),Weight(1/3-1/3*x,Msum(Weight(1/12*x,Ret(x)),Weight(5/48-5/48*x,Ret(x)))))),Weight(1/3-1/3*x,Msum(Weight(1/4*x,Msum(Weight(1/9*x,Ret(x)),Weight(5/36-5/36*x,Ret(x)))),Weight(1/4-1/4*x,Msum(Weight(1/12*x,Ret(x)),Weight(5/48-5/48*x,Ret(x)))))))),Weight(1/3-1/3*x,Msum(Weight(1/4*x,Msum(Weight(1/3*x,Msum(Weight(1/9*x,Ret(x)),Weight(5/36-5/36*x,Ret(x)))),Weight(1/3-1/3*x,Msum(Weight(1/12*x,Ret(x)),Weight(5/48-5/48*x,Ret(x)))))),Weight(1/4-1/4*x,Msum(Weight(1/4*x,Msum(Weight(1/9*x,Ret(x)),Weight(5/36-5/36*x,Ret(x)))),Weight(1/4-1/4*x,Msum(Weight(1/12*x,Ret(x)),Weight(5/48-5/48*x,Ret(x)))))))))),Weight(1-x,Msum(Weight(1/4*x,Msum(Weight(1/3*x,Msum(Weight(1/3*x,Msum(Weight(1/9*x,Ret(x)),Weight(5/36-5/36*x,Ret(x)))),Weight(1/3-1/3*x,Msum(Weight(1/12*x,Ret(x)),Weight(5/48-5/48*x,Ret(x)))))),Weight(1/3-1/3*x,Msum(Weight(1/4*x,Msum(Weight(1/9*x,Ret(x)),Weight(5/36-5/36*x,Ret(x)))),Weight(1/4-1/4*x,Msum(Weight(1/12*x,Ret(x)),Weight(5/48-5/48*x,Ret(x)))))))),Weight(1/4-1/4*x,Msum(Weight(1/4*x,Msum(Weight(1/3*x,Msum(Weight(1/9*x,Ret(x)),Weight(5/36-5/36*x,Ret(x)))),Weight(1/3-1/3*x,Msum(Weight(1/12*x,Ret(x)),Weight(5/48-5/48*x,Ret(x)))))),Weight(1/4-1/4*x,Msum(Weight(1/4*x,Msum(Weight(1/9*x,Ret(x)),Weight(5/36-5/36*x,Ret(x)))),Weight(1/4-1/4*x,Msum(Weight(1/12*x,Ret(x)),Weight(5/48-5/48*x,Ret(x)))))))))))"));
//writeln(parseHakaru("Weight(1/12*x+1/4,Msum(Weight(1/3/(1/12*x+1/4)*x,Ret(x)),Weight(1/(1/12*x+1/4)*(1/4-1/4*x),Ret(x))))"));
//writeln(parseHakaru("Msum(Weight(x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1-x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))"));
//writeln(parseHakaru("Msum(Weight(x,Msum(Weight(1/3*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/3-1/3*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))),Weight(1-x,Msum(Weight(1/4*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/4-1/4*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))))")); // 3
//writeln(parseHakaru("Msum(Weight(x,Msum(Weight(1/3*x,Msum(Weight(1/3*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/3-1/3*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))),Weight(1/3-1/3*x,Msum(Weight(1/4*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/4-1/4*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))))),Weight(1-x,Msum(Weight(1/4*x,Msum(Weight(1/3*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/3-1/3*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))),Weight(1/4-1/4*x,Msum(Weight(1/4*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/4-1/4*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))))))")); // 4
//writeln(parseHakaru("Msum(Weight(x,Msum(Weight(1/3*x,Msum(Weight(1/3*x,Msum(Weight(1/3*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/3-1/3*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))),Weight(1/3-1/3*x,Msum(Weight(1/4*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/4-1/4*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))))),Weight(1/3-1/3*x,Msum(Weight(1/4*x,Msum(Weight(1/3*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/3-1/3*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))),Weight(1/4-1/4*x,Msum(Weight(1/4*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/4-1/4*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))))))),Weight(1-x,Msum(Weight(1/4*x,Msum(Weight(1/3*x,Msum(Weight(1/3*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/3-1/3*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))),Weight(1/3-1/3*x,Msum(Weight(1/4*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/4-1/4*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))))),Weight(1/4-1/4*x,Msum(Weight(1/4*x,Msum(Weight(1/3*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/3-1/3*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))),Weight(1/4-1/4*x,Msum(Weight(1/4*x,Msum(Weight(1/9*x,Ret(x)),Weight(1/12-1/12*x,Ret(x)))),Weight(1/4-1/4*x,Msum(Weight(1/12*x,Ret(x)),Weight(1/16-1/16*x,Ret(x)))))))))))"));
//writeln(dEqZ(dFloat(0.00000001)));
//writeln(dIntSmp("x".dVar,dSumSmp("n".dVar,dDelta("x".dVar-"n".dVar))));
//writeln("∫dξ₁∑_ξ₂[-10+ξ₂≤0]·[-ξ₂≤0]·δ[-ξ₁+ξ₂]".dParse.simplify(one));
//writeln("∫da(∑_ξ₁δ[-a+ξ₁])·[-10+a≤0]·[-a≤0]".dParse.simplify(one));
//writeln("-tmp7F10320E0680·tmp7F1032681400+-tmp7F1032681400·tmp7F10326B17C0+-tmp7F1032681400·tmp7F1032A7FDC0+-tmp7F103277B640+tmp7F1032681400·tmp7F103306F980+-tmp7F1032681400·tmp7F103306F980+tmp7F10320E0680·tmp7F1032681400+tmp7F1032323440·tmp7F1032681400+tmp7F10323BAD80·tmp7F1032681400+tmp7F1032681400+tmp7F1032681400·tmp7F103290E4C0+tmp7F1032681400·tmp7F1032D9B640".dParse.simplify("[(-tmp7F1032681400·tmp7F103306F980+tmp7F10320E0680·tmp7F1032681400+tmp7F1032681400·tmp7F10326B17C0+tmp7F1032681400·tmp7F1032A7FDC0+tmp7F103277B640)·⅟tmp7F1032681400+tmp7F10330892C0=0]·[-1+tmp7F10330892C0≤0]·[-tmp7F103306F980+1+tmp7F10320E0680+tmp7F1032323440+tmp7F10323BAD80+tmp7F10326B17C0+tmp7F103290E4C0+tmp7F1032A7FDC0+tmp7F1032D9B640+tmp7F10330892C0=0]·[-tmp7F10330892C0≤0]·[tmp7F1032681400≠0]".dParse));
//writeln(DPlus.recursiveCombine("-tmp7F9FE5070800·tmp7F9FE54CB240".dParse,"(-tmp7F9FE5A65D80+1+tmp7F9FE4AD6A80+tmp7F9FE4D19900+tmp7F9FE4E14200+tmp7F9FE53028C0+tmp7F9FE54CB240+tmp7F9FE5791C80+tmp7F9FE5A7F6C0)·tmp7F9FE5070800".dParse,one));
//writeln("-tmp7FFFF6143580·tmp7FFFF6537C00+-tmp7FFFF6537C00·tmp7FFFF6550FC0+-tmp7FFFF6537C00·tmp7FFFF6B9BE80+-tmp7FFFF68AB0C0+tmp7FFFF6537C00·tmp7FFFF6EBB300".dParse.simplify("[(-tmp7FFFF6537C00·tmp7FFFF6EBB300+tmp7FFFF6143580·tmp7FFFF6537C00+tmp7FFFF6537C00·tmp7FFFF6550FC0+tmp7FFFF6537C00·tmp7FFFF6B9BE80+tmp7FFFF68AB0C0)·⅟tmp7FFFF6537C00+tmp7FFFF6F9F040=0]·[-1+tmp7FFFF6F9F040≤0]·[-tmp7FFFF6EBB300+1+tmp7FFFF6143580+tmp7FFFF61A4180+tmp7FFFF637CCC0+tmp7FFFF6550FC0+tmp7FFFF68ABE40+tmp7FFFF6B9BE80+tmp7FFFF6E8EA40+tmp7FFFF6F9F040=0]·[-tmp7FFFF6F9F040≤0]·[tmp7FFFF6537C00≠0]".dParse));
//SetX!DVar s;
//s.insert("x".dVar); //s.insert("__r₁".dVar);
//writeln("(∫dγ⃗∫dξ₁ q(ξ₁,γ⃗)·ξ₁)".dParse.substituteFun("q".dFunVar,"δ[-x+3]·δ[-x+__arg₁]".dParse,["__arg₁".dVar],s).simplify(one));
//writeln("∫dx [x·y²=z]·[0≤x]·[x≤1]".dParse.simplify(one));
//writeln("∫dx [f(x,y)=z]·[0≤x]·[x≤1]".dParse.simplify(one));
//writeln(DInt.staticSimplify("controlGroup₁".dVar,"(∫dξ₁([-1+ξ₁≤0]·[-ξ₁≤0]·probIfControl·δ[-isEffective+1]·δ[-treatedGroup₁+1]·δ[-treatedGroup₄+1]·δ[-treatedGroup₅+1]·δ[controlGroup₁]·δ[controlGroup₂]·δ[controlGroup₄]·δ[controlGroup₅]·δ[treatedGroup₂]·⅟2+[-1+ξ₁≤0]·[-ξ₁≤0]·δ[-probIfControl+ξ₁]·δ[-treatedGroup₁+1]·δ[-treatedGroup₄+1]·δ[-treatedGroup₅+1]·δ[controlGroup₁]·δ[controlGroup₂]·δ[controlGroup₄]·δ[controlGroup₅]·δ[isEffective]·δ[treatedGroup₂]·ξ₁·⅟2)·([-ξ₁+1≠0]·[-ξ₁+1≤0]+[ξ₁≠0]·[ξ₁≤0]))·[-controlGroup₁+1=0]·probIfControl".dParse));
//writeln("∫dξ₁[-2+-ξ₁≤0]·[-2+ξ₁≤0]·[-ξ₁²+1=0]".dParse.simplify(one));
//writeln("∫dx ((d/dx)⁻¹[e^(-x²)](x)*x·[0≤x]-x·[0≤x])".dParse.simplify(one));
//writeln("∫dξ₁∫dξ₂(∫dξ₃[-ξ₁+ξ₃≤0]·q(ξ₃,ξ₂,γ⃗))·[-ξ₁+ξ₂≤0]·[-ξ₂+ξ₁≠0]".dParse.simplify(one));
//writeln("∫dξ₂((0+[-ξ₂+ξ₁=0])·q(ξ₂,ξ₁,γ⃗))".dParse.simplify(one));
//writeln("∫dξ₁[-ξ₁≤0]·ξ₁·⅟e^(13·ξ₁²·⅟120)".dParse.simplify(one));
//writeln(dIntSmp("x".dVar,"∫dξ₁∫dξ₂ δ[x+ξ₁+ξ₂]".dParse));
//writeln("0+∫dξ₁(0+[ξ₁=0])·q(ξ₁,γ⃗)".dParse.simplify(one));
//writeln(" ∫dξ₁((-[ξ₁≤0]·⅟ξ₁+[-ξ₁≤0]·⅟ξ₁)·[ξ₁≠0]·q(r·⅟ξ₁,ξ₁,γ⃗)+(∫dξ₂ q(ξ₂,ξ₁,γ⃗))·[ξ₁=0]·δ[r])".dParse.simplify(one));
//writeln("∫dξ₂[ξ₁=0]·q(ξ₂,ξ₁,γ⃗)·δ[r]".dParse.simplify(one));
//writeln("∫dξ₁([-1+ξ₁≤0]·[-ξ₁≤0]·δ[-tmp+1]·δ[-x₂+1]·δ[-x₆+1]·δ[ξ₁]+[-1+ξ₁≤0]·[-ξ₁≤0]·δ[-x₂+1]·δ[-x₇+ξ₁]·δ[tmp])·([-ξ₁+1≠0]·[-ξ₁+1≤0]+[ξ₁≠0]·[ξ₁≤0])".dParse.simplify(one));
//writeln("∫dξ₁(∫dξ₂(∫dξ₃∫dξ₄([-ξ₁·ξ₂+ξ₃≤0]·[-ξ₁·ξ₂+ξ₄≤0]·[-ξ₃+ξ₁·ξ₂≠0]+[-ξ₄+ξ₁·ξ₂≠0]·[-ξ₄+ξ₁·ξ₂≤0])·q(ξ₄,ξ₃,γ⃗))·[-1+ξ₂≤0]·[-ξ₂≤0])·[-1+ξ₁≤0]·[-ξ₁≤0]".dParse.simplify(one));
//writeln("∫dξ₁([-1/ξ₁≤0]·[ξ₁≠0]·⅟e^(ξ₁²·⅟2)·√2̅·√π̅)".dParse.simplify(one));
//writeln("[-1/ξ₁≤0]·[ξ₁≠0]".dParse.linearizeConstraints("ξ₁".dVar));
//writeln("((-[⅟x≤0]·x·⅟2+[-⅟x≤0]·x·⅟2)·[ξ₁≠0]·∫dr₁ e^(-r₁²·x²·⅟2+-x²·⅟2))·⅟π".dParse.toString(Format.mathematica));
//writeln("(x²)^(1/2)".dParse.simplify(one)); // oops
//writeln("∫dξ₁(-[ξ₁≤0]·ξ₁·⅟2)·[ξ₁≠0]·⅟e^(ξ₁²·⅟2)·⅟ξ₁·⅟√π̅·√2̅".dParse.simplify(one));
//writeln("∫dξ₁[ξ₁≠0]·[ξ₁≤0]·⅟e^(ξ₁²·⅟2)".dParse.simplify(one));
//writeln("∫dx x·e^(-r₁²·x²·⅟2+-x²·⅟2)".dParse.simplify(one));
//writeln("lim[ξ₁ → ∞]((-(d/dx)⁻¹[e^(-x²)](ξ₁·√r̅₁̅²̅·̅⅟̅2̅+̅⅟̅2̅)·ξ₁·√r̅₁̅²̅·̅⅟̅2̅+̅⅟̅2̅+-e^((-r₁²·⅟2+-⅟2)·ξ₁²)·⅟2)·⅟(r₁²·⅟2+⅟2)+(d/dx)⁻¹[e^(-x²)](ξ₁·√r̅₁̅²̅·̅⅟̅2̅+̅⅟̅2̅)·ξ₁·⅟√r̅₁̅²̅·̅⅟̅2̅+̅⅟̅2̅)".dParse.simplify(one));
//writeln("lim[x → ∞] e^((-r₁²·⅟2+-⅟2)·x²)".dParse.simplify(one));
//writeln(dInt("x".dVar,dDelta(dTuple([one,one,one]),"x".dVar,tupleTy([ℝ,ℝ,ℝ]))/2+dDelta(dTuple([one,one,one+one]),"x".dVar,tupleTy([ℝ,ℝ,ℝ]))/2).simplify(one));
//writeln(dInt("x".dVar,dInt("y".dVar,dInt("z".dVar,"[0<=y]·[y<=1]·[0<=z]·[z<=1]".dParse*dDelta(dTuple(["y".dVar,"z".dVar]),"x".dVar,tupleTy([ℝ,ℝ,ℝ]))))).simplify(one));
//writeln("∫dξ₁∫dξ₂(∫dξ₃[-1+ξ₃≤0]·[-ξ₃≤0]·δ_ξ₁[(ξ₃,ξ₂)])·[-1+ξ₂≤0]·[-ξ₂≤0]".dParse.simplify(one));
//(∫dk[-1+k≤0]·[-k≤0]·δ_x[x₁[0 ↦ k]])·[-x₁.length≤0]·[x₁.length≠0]·δ[-n+2]·δ_x₁[[k ↦ 0] (1)]
//auto exp=dIntSmp("k".dVar,"[-1+k≤0]·[-k≤0]".dParse*dDelta(dIUpdate("arr".dVar,zero,"k".dVar),"x".dVar,arrayTy(ℝ)))*dDelta("arr".dVar,dArray([zero]),arrayTy(ℝ));
//writeln(exp);
//DEB=true;
//writeln(dIntSmp("arr".dVar,exp));
//writeln(dIntSmp("k".dVar,"[-1+k≤0]·[-k≤0]".dParse*dDelta(dIUpdate("arr".dVar,zero,"k".dVar),"x".dVar,arrayTy(ℝ))).substitute("arr".dVar,dArray([zero])));
//writeln(dIntSmp("k".dVar,"[-1+k≤0]·[-k≤0]".dParse*dDelta(dIUpdate(dArray([zero]),zero,"k".dVar),"x".dVar,arrayTy(ℝ))));
//auto e="((∫dξ₁(∫dξ₂[-1+ξ₂≤0]·[-ξ₂≤0]·δ_t[(-ξ₁+ξ₂,-ξ₂+ξ₁)])·[-1+ξ₁≤0]·[-ξ₁≤0])·⅟2+δ_t[(0,0)]·⅟2)·[-t[0]+-t[1]=0]".dParse;
//writeln(dIntSmp("t".dVar,e));
//auto e="((∫dξ₁(∫dξ₂[-1+ξ₂≤0]·[-ξ₂≤0]·δ_x[(ξ₂,ξ₁)])·[-1+ξ₁≤0]·[-ξ₁≤0])·δ_y[(x[0],x[1])]·⅟2+(∫dξ₁(∫dξ₂[-1+ξ₂≤0]·[-ξ₂≤0]·δ_x[(ξ₂,ξ₁)])·[-1+ξ₁≤0]·[-ξ₁≤0])·δ_y[(x[1],x[0])]·⅟2)·[-t[0]+-t[1]=0]·δ_t[(-y[0]+x[0],-y[1]+x[1])]".dParse;
//writeln(e);
//writeln(dIntSmp("y".dVar,dIntSmp("t".dVar,dIntSmp("x".dVar,e))));
//auto e="((∫dξ₁(∫dξ₂[-1+ξ₂≤0]·[-ξ₂≤0]·δ_t[(-y[0]+ξ₂,-y[1]+ξ₁)]·δ_y[(ξ₁,ξ₂)])·[-1+ξ₁≤0]·[-ξ₁≤0])·⅟2+(∫dξ₁(∫dξ₂[-1+ξ₂≤0]·[-ξ₂≤0]·δ_t[(-y[0]+ξ₂,-y[1]+ξ₁)]·δ_y[(ξ₂,ξ₁)])·[-1+ξ₁≤0]·[-ξ₁≤0])·⅟2)·[-t[0]+-t[1]=0]".dParse;
//auto e="(∫dξ₁(∫dξ₂[-1+ξ₂≤0]·[-ξ₂≤0]·δ_t[(-y[0]+ξ₂,-y[1]+ξ₁)]·δ_y[(ξ₂,ξ₁)])·[-1+ξ₁≤0]·[-ξ₁≤0])·[-t[0]+-t[1]=0]".dParse;
//writeln(dIntSmp("t".dVar,e));
//auto e="[-1+-k+y[0]+y[1]≤0]·[-1+k≤0]·[-k+-l+y[0]+y[1]=0]·[-k≤0]·[-l≤0]·δ_y[(-k+y[0]+y[1],k)]".dParse; // this expression should not happen.
//dw(e);
//dw(dIntSmp("k".dVar,e));
/+auto e="(∫dξ₁[-1+ξ₁≤0]·[-ξ₁≤0]·δ_x[x₁[0 ↦ ξ₁]])".dParse;
auto f="[k ↦ 0] (1)".dParse;
dw(e," ",f);
dw("!!!");
auto r=e.substitute("x₁".dVar,f);
dw(r);+/
//auto e="∫dξ₁[-1+ξ₁≤0]·[-ξ₁≤0]·δ_x[[ξ₁ ↦ [ξ₁=0]·ξ₂] (1)]".dParse;
//auto e="∫dy∫dz δ[-x+1]·δ[-y+1]·δ[-z+1]".dParse;
//dw(e," ",e.simplify(one));
//writeln("e: ",e);
//writeln("!!");
//writeln("int: e",dInt("x".dVar,e));
//auto e="(∫dξ₁[-1+ξ₁≤0]·[-ξ₁≤0]·δ_a[a₁[0 ↦ a₁[0][0 ↦ ξ₁]]])·δ_a₁[[ξ₁ ↦ ([ξ₂ ↦ 0] (1))·[-1+ξ₁=0]+([ξ₂ ↦ 0] (1))·[ξ₁=0]] (2)]".dParse;
//writeln(dIntSmp("a₁".dVar,e));
/+auto e="(∫dξ₁δ[ξ₁]·δ_a[a₁[0 ↦ a₁[0][0 ↦ ξ₁]]])".dParse;
auto f="[ξ₁ ↦ ([ξ₂ ↦ 0] (1))·[-1+ξ₁=0]+([ξ₂ ↦ 0] (1))·[ξ₁=0]] (2)".dParse;
dw(e," ",f);
dw("!!");
writeln(e.substitute("a₁".dVar,f));+/