-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathevaluate.py
207 lines (170 loc) · 8.09 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import time
from collections import defaultdict
import numpy as np
import torch
import torch.cuda
import torch.distributed as dist
from src import dist_utils, slurm, util
from src.index_io import load_or_initialize_index, save_embeddings_and_index
from src.model_io import create_checkpoint_directories, load_or_initialize_atlas_model
from src.options import get_options
from src.tasks import get_task
os.environ["TOKENIZERS_PARALLELISM"] = "true"
def _get_eval_data_iterator(opt, data_path, task):
data_iterator = task.data_iterator(data_path, opt.global_rank, opt.world_size, opt=opt, is_eval=True)
data_iterator = filter(None, map(task.process, data_iterator))
data_iterator = list(task.batch_iterator(data_iterator, opt.per_gpu_batch_size))
if dist.is_initialized():
len_data = torch.tensor(len(data_iterator), device=torch.device("cuda"))
dist.all_reduce(len_data, torch.distributed.ReduceOp.MAX)
dist.barrier()
if len(data_iterator) < len_data.item():
data_iterator.extend([{} for _ in range(len_data.item() - len(data_iterator))])
return data_iterator
@torch.no_grad()
def run_retrieval_only(model, index, opt, data_path, step=None):
model.eval()
metrics = defaultdict(lambda: [])
dataset_wpred = []
unwrapped_model = util.get_unwrapped_model_if_wrapped(model)
reader_tokenizer = unwrapped_model.reader_tokenizer
task = get_task(opt, reader_tokenizer)
data_iterator = _get_eval_data_iterator(opt, data_path, task)
for i, batch in enumerate(data_iterator):
query = batch.get("query", [""])
answers = batch.get("target", [""])
batch_metadata = batch.get("metadata")
query_enc = model.retriever_tokenize(query)
retrieved_passages, _ = unwrapped_model.retrieve(
index,
opt.n_context,
query,
query_enc["input_ids"].cuda(),
query_enc["attention_mask"].cuda(),
batch_metadata=batch_metadata,
filtering_fun=task.filter,
)
# If example is a padding example then skip step
if (len(query) == 0) or (len(query[0]) == 0):
continue
for k in range(len(retrieved_passages)):
if opt.write_results:
gold = [answers[k]] if not "answers" in batch else batch["answers"][k]
ex = {"query": query[k], "answers": gold, "passages": retrieved_passages[k]}
if batch_metadata is not None:
ex["metadata"] = batch_metadata[k]
if "id" in batch:
ex["id"] = batch["id"][k]
dataset_wpred.append(ex)
if opt.write_results:
dataset_name, _ = os.path.splitext(os.path.basename(data_path))
dataset_name = f"{dataset_name}-step-{step}"
util.save_distributed_dataset(dataset_wpred, dataset_name, opt)
return metrics
@torch.no_grad()
def evaluate(model, index, opt, data_path, step=None):
model.eval()
metrics = defaultdict(lambda: [])
dataset_wpred = []
unwrapped_model = util.get_unwrapped_model_if_wrapped(model)
reader_tokenizer = unwrapped_model.reader_tokenizer
task = get_task(opt, reader_tokenizer)
data_iterator = _get_eval_data_iterator(opt, data_path, task)
for i, batch in enumerate(data_iterator):
query = batch.get("query", [""])
answers = batch.get("target", [""])
batch_metadata = batch.get("metadata")
target_tokens = batch.get("target_tokens")
query_enc, labels, decoder_input_ids = unwrapped_model.tokenize(query, answers, target_tokens=target_tokens)
if not opt.use_file_passages:
query_ids_retriever = query_enc["input_ids"].cuda()
query_mask_retriever = query_enc["attention_mask"].cuda()
retrieved_passages, _ = unwrapped_model.retrieve(
index,
opt.n_context,
query,
query_ids_retriever,
query_mask_retriever,
batch_metadata=batch_metadata,
filtering_fun=task.filter,
)
else:
assert "passages" in batch, "cant use use_file_passages mode without passing in passages"
retrieved_passages = [p[: opt.n_context] for p in batch["passages"]]
# If example is a padding example then skip step
if (len(query) == 0) or (len(query[0]) == 0):
continue
reader_tokens, _ = unwrapped_model.tokenize_passages(query, retrieved_passages)
if "eval_loss" in task.metrics:
eval_loss, logits = unwrapped_model.compute_reader_loss_and_logits(reader_tokens, decoder_input_ids, labels)
metrics["eval_loss"].append(eval_loss)
generation = unwrapped_model.generate(
reader_tokens, query, choices=batch["choices"] if "choices" in batch else None
)
for k, g in enumerate(generation):
if opt.decoder_prompt_format is not None:
query_ids = reader_tokenizer.encode(
opt.decoder_prompt_format.format_map({"query": query[k]}), add_special_tokens=False
)
g = g[len(query_ids) + 1 :]
pred = reader_tokenizer.decode(g, skip_special_tokens=True)
gold = [answers[k]] if not "answers" in batch else batch["answers"][k]
sample_metrics = task.evaluation(pred, gold)
for key, value in sample_metrics.items():
metrics[key].append(value)
if opt.write_results:
ex = {"query": query[k], "answers": gold, "generation": pred}
if not opt.dont_write_passages:
ex["passages"] = retrieved_passages[k]
if batch_metadata is not None:
ex["metadata"] = batch_metadata[k]
if opt.task == "multiple_choice":
ex["choice_logits"] = task.get_choice_logits(logits[k])
if "id" in batch:
ex["id"] = batch["id"][k]
dataset_wpred.append(ex)
metrics, dataset_wpred = task.evaluation_postprocessing(metrics, dataset_wpred)
metrics = util.avg_dist_dict(task.metrics, metrics)
metrics = {key: value if key == "eval_loss" else 100 * value for key, value in metrics.items()}
if opt.write_results:
dataset_name, _ = os.path.splitext(os.path.basename(data_path))
dataset_name = f"{dataset_name}-step-{step}"
util.save_distributed_dataset(dataset_wpred, dataset_name, opt)
return metrics
if __name__ == "__main__":
options = get_options()
opt = options.parse()
torch.manual_seed(opt.seed)
slurm.init_distributed_mode(opt)
slurm.init_signal_handler()
checkpoint_path, saved_index_path = create_checkpoint_directories(opt)
logger = util.init_logger(opt.is_main, opt.is_distributed, os.path.join(checkpoint_path, "run.log"))
if opt.is_main:
options.print_options(opt)
logger.info(f"world size: {dist_utils.get_world_size()}")
index, passages = load_or_initialize_index(opt)
model, _, _, _, _, opt, step = load_or_initialize_atlas_model(opt, eval_only=True)
logger.info("Start Evaluation")
dist_utils.barrier()
if not opt.use_file_passages and opt.load_index_path is None:
indexing_start = time.time()
model.build_index(index, passages, opt.per_gpu_embedder_batch_size, logger)
if opt.save_index_path is not None:
save_embeddings_and_index(index, opt)
for data_path in opt.eval_data:
dataset_name = os.path.basename(data_path)
logger.info(f"Start Evaluation on {data_path}")
if opt.retrieve_only:
run_retrieval_only(model, index, opt, data_path, step)
else:
metrics = evaluate(model, index, opt, data_path, step)
log_message = f"Dataset: {dataset_name}"
for k, v in metrics.items():
log_message += f" | {v:.3f} {k}"
logger.info(log_message)