From 83bc94fa1bc331a4f4b53bc0478f406177505c50 Mon Sep 17 00:00:00 2001 From: facundoq Date: Tue, 12 Jul 2022 16:44:26 -0300 Subject: [PATCH] changed name of package, added transform parameters --- setup.py | 8 ++++---- tinyimagenet.py | 17 +++++++++++------ 2 files changed, 15 insertions(+), 10 deletions(-) diff --git a/setup.py b/setup.py index 9747a8d..01f4596 100644 --- a/setup.py +++ b/setup.py @@ -12,8 +12,8 @@ long_description = f.read() -url="https://github.com/facundoq/torchvision-tinyimagenet" -VERSION="0.2" +url="https://github.com/facundoq/tinyimagenet" +VERSION="0.1" class UploadCommand(Command): """Support setup.py upload.""" @@ -53,7 +53,7 @@ def run(self): setup( - name="torchvision-tinyimagenet", + name="tinyimagenet", version=VERSION, python_requires='>=3.6', packages=find_packages(), @@ -77,7 +77,7 @@ def run(self): # metadata to display on PyPI author="Facundo Manuel Quiroga", author_email="facundoq@gmail.com", - description="Dataset class for PyTorch and the TinyImageNet dataset.", + description="Dataset class for PyTorch and the TinyImageNet dataset, with automated download and extraction.", keywords="TinyImageNet ImageNet Dataset PyTorch torch torchvision", url=url, # project home page, if any project_urls={ diff --git a/tinyimagenet.py b/tinyimagenet.py index f8fc6c9..b0a1131 100644 --- a/tinyimagenet.py +++ b/tinyimagenet.py @@ -103,7 +103,7 @@ class TinyImageNet(ImageFolder): mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] - def __init__(self, root: Path, split: str = "train") -> None: + def __init__(self, root: Path, split: str = "train",transform=None, target_transform=None) -> None: if isinstance(root,str): root = Path(root) assert split in ["train","val","test"] @@ -112,7 +112,7 @@ def __init__(self, root: Path, split: str = "train") -> None: if not images_root.exists(): download_resources(root,mirrors,resources) preprocess_val(images_root) - super().__init__(images_root/split) + super().__init__(images_root/split,transform=transform,target_transform=target_transform) self.idx_to_words,self.idx_to_class = self.load_words_classes(images_root) def load_words_classes(self,root:Path): @@ -131,16 +131,21 @@ def load_words_classes(self,root:Path): if __name__ == '__main__': - + from torchvision import transforms + logging.basicConfig(level=logging.INFO) - + transform = transforms.Compose( + [transforms.ToTensor(), + transforms.Normalize(TinyImageNet.mean,TinyImageNet.std)] + ) + split ="val" - dataset = TinyImageNet(Path("~/.torchvision/tinyimagenet/"),split=split) + dataset = TinyImageNet(Path("~/.torchvision/tinyimagenet/"),split=split,transform=transform) n = len(dataset) print(f"TinyImageNet, split {split}, has {n} samples.") print("Showing some samples") for i in range(0,n,n//5): image,klass = dataset[i] - print(f"Sample of class {klass:3d}, image {image}, words {dataset.idx_to_words[klass]}") + print(f"Sample of class {klass:3d}, image shape {image.shape}, words {dataset.idx_to_words[klass]}")