-
Notifications
You must be signed in to change notification settings - Fork 3
/
lsl-record.py
executable file
·104 lines (85 loc) · 2.92 KB
/
lsl-record.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#!/usr/bin/env python
## code by Alexandre Barachant
## edited by Fahd Alhazmi
import numpy as np
import pandas as pd
from time import time, strftime, gmtime, sleep
from optparse import OptionParser
from pylsl import StreamInlet, resolve_byprop
from sklearn.linear_model import LinearRegression
default_fname = ("data/data_%s.csv" % strftime("%Y-%m-%d-%H.%M.%S", gmtime()))
parser = OptionParser()
parser.add_option("-d", "--duration",
dest="duration", type='int', default=5000,
help="duration of the recording in seconds.")
parser.add_option("-f", "--filename",
dest="filename", type='str', default=default_fname,
help="Name of the recording file.")
# dejitter timestamps
dejitter = False
(options, args) = parser.parse_args()
print("looking for an EEG stream...")
streams = resolve_byprop('type', 'EEG', timeout=2)
if len(streams) == 0:
raise(RuntimeError, "Cant find EEG stream")
print("Start aquiring data")
inlet = StreamInlet(streams[0])
eeg_time_correction = inlet.time_correction()
print("looking for a Markers stream...")
marker_streams = resolve_byprop('type', 'Markers', timeout=2)
if marker_streams:
inlet_marker = StreamInlet(marker_streams[0])
marker_time_correction = inlet_marker.time_correction()
else:
inlet_marker = False
print("Cant find Markers stream")
info = inlet.info()
description = info.desc()
freq = info.nominal_srate()
Nchan = info.channel_count()
ch = description.child('channels').first_child()
ch_names = [ch.child_value('label')]
for i in range(1, Nchan):
ch = ch.next_sibling()
ch_names.append(ch.child_value('label'))
res = []
timestamps = []
markers = []
t_init = time()
print('Start recording at time t=%.3f' % t_init)
while (time() - t_init) < options.duration:
try:
data, timestamp = inlet.pull_chunk(timeout=1.0)
print(' EEG timestamps: ', timestamp[0])
if timestamp:
res.append(data)
timestamps.extend(timestamp)
#print(len(timestamps))
if inlet_marker:
marker, timestamp = inlet_marker.pull_sample(timeout=0.0)
if timestamp:
print(' MLR timestamps: ', timestamp*10)
markers.append([marker, timestamp*10])
except KeyboardInterrupt:
break
res = np.concatenate(res, axis=0)
timestamps = np.array(timestamps)
if dejitter:
y = timestamps
X = np.atleast_2d(np.arange(0, len(y))).T
lr = LinearRegression()
lr.fit(X, y)
timestamps = lr.predict(X)
res = np.c_[timestamps, res]
data = pd.DataFrame(data=res, columns=['timestamps'] + ch_names)
data['Marker'] = 0
# process markers:
for marker in markers:
# find index of margers
abs_diffs = np.abs(marker[1] - timestamps)
ix = np.argmin(abs_diffs)
val = timestamps[ix]
data.loc[ix, 'Marker'] = marker[0][0]
print(data.head())
data.to_csv(options.filename, float_format='%.3f', index=False)
print('Done !')