-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
253 lines (213 loc) · 8.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# PyTorch/XLA
try:
import torch_xla.core.xla_model as xm
except ImportError:
pass
try:
import torch_xla.debug.metrics as met
except ImportError:
pass
try:
import torch_xla.distributed.parallel_loader as pl
except ImportError:
pass
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
# ---------------------- Functions for GPU Training ---------------------- #
def evaluate_accuracy(loader, net, device=None):
if device is None and isinstance(net, nn.Module):
device = list(net.parameters())[0].device
acc_sum, n = 0.0, 0
with torch.no_grad():
for data, target in loader:
if isinstance(net, nn.Module):
net.eval()
out = net(data.to(device))
pred = out.argmax(dim=1, keepdim=True)
acc_sum += pred.eq(
target.view_as(pred).to(device)).sum().item()
net.train()
else:
raise NotImplementedError
n += target.shape[0]
return acc_sum / n
def train_model(net,
train_loader,
test_loader,
batch_size,
optimizer,
scheduler,
device,
num_epochs,
comment='DenseNet_C10'):
writer = SummaryWriter(comment=comment)
net = net.to(device)
loss_fn = nn.CrossEntropyLoss()
print("training on ", device)
for epoch in range(num_epochs):
start = time.time()
loss_sum, train_acc_sum, sample_count, batch_count = 0.0, 0.0, 0, 0
for data, target in train_loader:
# Fit NN model
data = data.to(device)
target = target.to(device)
out = net(data)
loss = loss_fn(out, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Compute the sum of loss and training accuracy
loss_sum += loss.cpu().item()
pred = out.argmax(dim=1, keepdim=True)
train_acc_sum += pred.eq(
target.view_as(pred).to(device)).sum().item()
sample_count += target.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_loader, net)
scheduler.step()
# Training status
print(
'epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
% (epoch + 1, loss_sum / batch_count, train_acc_sum / sample_count,
test_acc, time.time() - start))
# Log stuffs
writer.add_scalar('loss', loss_sum / batch_count, epoch + 1)
writer.add_scalar('train acc', train_acc_sum / sample_count, epoch + 1)
writer.add_scalar('test acc', test_acc, epoch + 1)
def load_data_cifar_10(batch_size, resize=None, root='/tmp/cifar10'):
"""Download and load the CIFAR-10 dataset."""
norm = transforms.Normalize(mean=(0.4914, 0.4822, 0.4465),
std=(0.2023, 0.1994, 0.2010))
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), norm
])
transform_test = transforms.Compose([transforms.ToTensor(), norm])
cifar10_train = datasets.CIFAR10(root=root,
train=True,
download=True,
transform=transform_train)
cifar10_test = datasets.CIFAR10(root=root,
train=False,
download=True,
transform=transform_test)
train_loader = DataLoader(cifar10_train,
batch_size=batch_size,
shuffle=True,
num_workers=4)
test_loader = DataLoader(cifar10_test,
batch_size=batch_size,
shuffle=False,
num_workers=4)
return train_loader, test_loader
# ---------------------- Functions for TPU Training ---------------------- #
def load_cifar_10_xla(batch_size, root='/tmp/cifar10'):
"""Download and load the CIFAR-10 dataset."""
if not xm.is_master_ordinal():
# Barrier: Wait until master is done downloading
xm.rendezvous('download_only_once')
# Get and shard dataset into dataloaders
norm = transforms.Normalize(mean=(0.4914, 0.4822, 0.4465),
std=(0.2023, 0.1994, 0.2010))
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), norm
])
transform_test = transforms.Compose([transforms.ToTensor(), norm])
cifar10_train = datasets.CIFAR10(root=root,
train=True,
download=True,
transform=transform_train)
cifar10_test = datasets.CIFAR10(root=root,
train=False,
download=True,
transform=transform_test)
if xm.is_master_ordinal():
# Barrier: Master done downloading, other workers can proceed
xm.rendezvous('download_only_once')
train_sampler = DistributedSampler(cifar10_train,
num_replicas=xm.xrt_world_size(),
rank=xm.get_ordinal(),
shuffle=True)
train_loader = DataLoader(cifar10_train,
batch_size=batch_size,
sampler=train_sampler,
num_workers=4,
drop_last=True)
test_loader = DataLoader(cifar10_test,
batch_size=batch_size,
shuffle=False,
num_workers=4,
drop_last=True)
return train_loader, test_loader
def test_loop_fn(loader, net):
total_samples = 0
correct = 0
net.eval()
data, pred, target = None, None, None
for data, target in loader:
out = net(data)
pred = out.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
total_samples += data.size()[0]
accuracy = 100.0 * correct / total_samples
print('[xla:{}] Accuracy={:.2f}%'.format(xm.get_ordinal(), accuracy),
flush=True)
return accuracy, data, pred, target
def train_loop_fn(loader, net, optimizer, loss_fn, batch_size, log_steps):
tracker = xm.RateTracker()
net.train()
for x, (data, target) in enumerate(loader):
optimizer.zero_grad()
out = net(data)
loss = loss_fn(out, target)
loss.backward()
xm.optimizer_step(optimizer)
tracker.add(batch_size)
if x % log_steps == 0:
print(
'[xla:{}]({}) Loss={:.5f} Rate={:.2f} GlobalRate={:.2f} Time={}'
.format(xm.get_ordinal(), x, loss.item(), tracker.rate(),
tracker.global_rate(), time.asctime()),
flush=True)
def train_model_xla(net,
batch_size,
lr,
num_epochs,
log_steps=20,
metrics_debug=False):
torch.manual_seed(1)
train_loader, test_loader = load_cifar_10_xla(batch_size)
# Scale learning rate to num cores
lr = lr * xm.xrt_world_size()
# Get loss function, optimizer, and model
device = xm.xla_device()
net = net.to(device)
optimizer = optim.SGD(net.parameters(),
lr=lr,
momentum=0.9,
weight_decay=5e-4)
loss_fn = nn.CrossEntropyLoss()
# Train and eval loops
accuracy = 0.0
data, pred, target = None, None, None
for epoch in range(1, num_epochs + 1):
para_loader = pl.ParallelLoader(train_loader, [device])
train_loop_fn(para_loader.per_device_loader(device), net, optimizer,
loss_fn, batch_size, log_steps)
xm.master_print("Finished training epoch {}".format(epoch))
para_loader = pl.ParallelLoader(test_loader, [device])
accuracy, data, pred, target = test_loop_fn(
para_loader.per_device_loader(device), net)
if metrics_debug:
xm.master_print(met.metrics_report(), flush=True)
return accuracy, data, pred, target