forked from noklam/miniKedro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_v5.py
49 lines (45 loc) · 1.53 KB
/
run_v5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
if __name__ == "__main__":
print("Start Pipeline")
from minikedro.pipelines.data_processing.nodes import (
create_model_input_table,
preprocess_companies,
preprocess_shuttles,
)
from rich.logging import RichHandler
import logging
import pandas as pd
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[RichHandler()],
)
logger = logging.getLogger("minikedro")
from minikedro.v5 import ConfigLoader, DataCatalog
config_loader = ConfigLoader("src/minikedro/v5/config.yml")
data_catalog = DataCatalog(config_loader.data)
steps = [
{
"func": preprocess_companies,
"inputs": "companies",
"outputs": "preprocessed_companies",
},
{
"func": preprocess_shuttles,
"inputs": "shuttles",
"outputs": "preprocessed_shuttles",
},
{
"func": create_model_input_table,
"inputs": ["preprocessed_shuttles", "preprocessed_companies", "reviews"],
"outputs": "model_input_table",
},
]
for step in steps:
func = step["func"]
logger.info(f"Running {func.__name__}")
inputs = step["inputs"]
if isinstance(inputs, str):
inputs = [inputs] # Make it iterable for convenience
inputs = [data_catalog.load(input_) for input_ in inputs]
outputs = func(*inputs)
data_catalog.save(outputs, step["outputs"])