forked from noklam/miniKedro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_v6.py
53 lines (48 loc) · 1.59 KB
/
run_v6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
if __name__ == "__main__":
print("Start Pipeline")
from minikedro.pipelines.data_processing.nodes import (
create_model_input_table,
preprocess_companies,
preprocess_shuttles,
)
from rich.logging import RichHandler
import logging
import pandas as pd
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[RichHandler()],
)
logger = logging.getLogger("minikedro")
from minikedro.v6 import ConfigLoader, DataCatalog, pipeline, node
config_loader = ConfigLoader("src/minikedro/v6/config.yml")
data_catalog = DataCatalog(config_loader.data)
nodes = pipeline([
node(**{
"func": preprocess_companies,
"inputs": "companies",
"outputs": "preprocessed_companies",
}
),
node(**{
"func": preprocess_shuttles,
"inputs": "shuttles",
"outputs": "preprocessed_shuttles",
}
),
node(**{
"func": create_model_input_table,
"inputs": ["preprocessed_shuttles", "preprocessed_companies", "reviews"],
"outputs": "model_input_table",
}
)
])
for node_ in nodes:
func = node_["func"]
logger.info(f"Running {func.__name__}")
inputs = node_["inputs"]
if isinstance(inputs, str):
inputs = [inputs] # Make it iterable for convenience
inputs = [data_catalog.load(input_) for input_ in inputs]
outputs = func(*inputs)
data_catalog.save(outputs, node_["outputs"])