flippercy
/
Locally-Interpretable-One-Class-Anomaly-Detection-for-Credit-Card-Fraud-Detection
Public
forked from tony10101105/Locally-Interpretable-One-Class-Anomaly-Detection-for-Credit-Card-Fraud-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
split.py
37 lines (28 loc) · 1.17 KB
/
split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import DataSet
import torch
from torch.utils.data import random_split
import csv
import random
torch.manual_seed(4)#for reproducibility
random.seed(0)
def getDatasets():
non_fraud_Data = DataSet.SplitedDataSet(mode = 'non-fraud')
fraud_Data = DataSet.SplitedDataSet(mode = 'fraud')
data_point_num = len(non_fraud_Data)
test_data_point_num = 490
train_data_point_num = data_point_num - test_data_point_num
trainData, nonFraudTestData = random_split(non_fraud_Data, [train_data_point_num, test_data_point_num])
trainData = DataSet.DataSet([trainData])
fraud_Data, _ = random_split(fraud_Data, [490, 2])
testData = DataSet.DataSet([nonFraudTestData, fraud_Data]) #following the setting of 13.pdf
return trainData, testData
def writeToCsv():
trainData, testData = getDatasets()
with open("./datasets/trainData.csv", "w") as f:
writer = csv.writer(f)
for i in range(len(trainData)):
writer.writerow(trainData[i][0]+[trainData[i][1]])
with open("./datasets/testData.csv", "w") as f:
writer = csv.writer(f)
for i in range(len(testData)):
writer.writerow(testData[i][0]+[testData[i][1]])