forked from harvitronix/five-video-classification-methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
161 lines (148 loc) · 5.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
A collection of models we'll use to attempt to classify videos.
"""
from keras.layers import Dense, Flatten, Dropout
from keras.layers.recurrent import LSTM
from keras.models import Sequential, load_model
from keras.optimizers import Adam
from keras.layers.wrappers import TimeDistributed
from keras.layers.convolutional import (Conv2D, MaxPooling3D, Conv3D,
MaxPooling2D)
from collections import deque
import sys
class ResearchModels():
def __init__(self, nb_classes, model, seq_length,
saved_model=None, features_length=2048):
"""
`model` = one of:
lstm
crnn
mlp
conv_3d
`nb_classes` = the number of classes to predict
`seq_length` = the length of our video sequences
`saved_model` = the path to a saved Keras model to load
"""
# Set defaults.
self.seq_length = seq_length
self.load_model = load_model
self.saved_model = saved_model
self.nb_classes = nb_classes
self.feature_queue = deque()
# Set the metrics. Only use top k if there's a need.
metrics = ['accuracy']
if self.nb_classes >= 10:
metrics.append('top_k_categorical_accuracy')
# Get the appropriate model.
if self.saved_model is not None:
print("Loading model %s" % self.saved_model)
self.model = load_model(self.saved_model)
elif model == 'lstm':
print("Loading LSTM model.")
self.input_shape = (seq_length, features_length)
self.model = self.lstm()
elif model == 'crnn':
print("Loading CRNN model.")
self.input_shape = (seq_length, 80, 80, 3)
self.model = self.crnn()
elif model == 'mlp':
print("Loading simple MLP.")
self.input_shape = features_length * seq_length
self.model = self.mlp()
elif model == 'conv_3d':
print("Loading Conv3D")
self.input_shape = (seq_length, 80, 80, 3)
self.model = self.conv_3d()
else:
print("Unknown network.")
sys.exit()
# Now compile the network.
optimizer = Adam(lr=1e-6) # aggressively small learning rate
self.model.compile(loss='categorical_crossentropy', optimizer=optimizer,
metrics=metrics)
def lstm(self):
"""Build a simple LSTM network. We pass the extracted features from
our CNN to this model predomenently."""
# Model.
model = Sequential()
model.add(LSTM(2048, return_sequences=True, input_shape=self.input_shape,
dropout=0.5))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(self.nb_classes, activation='softmax'))
return model
def crnn(self):
"""Build a CNN into RNN.
Starting version from:
https://github.com/udacity/self-driving-car/blob/master/
steering-models/community-models/chauffeur/models.py
"""
model = Sequential()
model.add(TimeDistributed(Conv2D(32, (3,3),
kernel_initializer="he_normal",
activation='relu'), input_shape=self.input_shape))
model.add(TimeDistributed(Conv2D(32, (3,3),
kernel_initializer="he_normal",
activation='relu')))
model.add(TimeDistributed(MaxPooling2D()))
model.add(TimeDistributed(Conv2D(48, (3,3),
kernel_initializer="he_normal",
activation='relu')))
model.add(TimeDistributed(Conv2D(48, (3,3),
kernel_initializer="he_normal",
activation='relu')))
model.add(TimeDistributed(MaxPooling2D()))
model.add(TimeDistributed(Conv2D(64, (3,3),
kernel_initializer="he_normal",
activation='relu')))
model.add(TimeDistributed(Conv2D(64, (3,3),
kernel_initializer="he_normal",
activation='relu')))
model.add(TimeDistributed(MaxPooling2D()))
model.add(TimeDistributed(Conv2D(128, (3,3),
kernel_initializer="he_normal",
activation='relu')))
model.add(TimeDistributed(Conv2D(128, (3,3),
kernel_initializer="he_normal",
activation='relu')))
model.add(TimeDistributed(MaxPooling2D()))
model.add(TimeDistributed(Flatten()))
model.add(LSTM(256, return_sequences=True))
model.add(Flatten())
model.add(Dense(512))
model.add(Dropout(0.5))
model.add(Dense(self.nb_classes, activation='softmax'))
return model
def mlp(self):
"""Build a simple MLP."""
# Model.
model = Sequential()
model.add(Dense(512, input_dim=self.input_shape))
model.add(Dropout(0.5))
model.add(Dense(512))
model.add(Dropout(0.5))
model.add(Dense(self.nb_classes, activation='softmax'))
return model
def conv_3d(self):
"""
Build a 3D convolutional network, based loosely on C3D.
https://arxiv.org/pdf/1412.0767.pdf
"""
# Model.
model = Sequential()
model.add(Conv3D(
32, (7,7,7), activation='relu', input_shape=self.input_shape
))
model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2)))
model.add(Conv3D(64, (3,3,3), activation='relu'))
model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2)))
model.add(Conv3D(128, (2,2,2), activation='relu'))
model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2)))
model.add(Flatten())
model.add(Dense(256))
model.add(Dropout(0.2))
model.add(Dense(256))
model.add(Dropout(0.2))
model.add(Dense(self.nb_classes, activation='softmax'))
return model