forked from IntelLabs/coach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpal_agent.py
107 lines (88 loc) · 4.93 KB
/
pal_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union
import numpy as np
from rl_coach.agents.dqn_agent import DQNAgentParameters, DQNAlgorithmParameters
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
class PALAlgorithmParameters(DQNAlgorithmParameters):
"""
:param pal_alpha: (float)
A factor that weights the amount by which the advantage learning update will be taken into account.
:param persistent_advantage_learning: (bool)
If set to True, the persistent mode of advantage learning will be used, which encourages the agent to take
the same actions one after the other instead of changing actions.
:param monte_carlo_mixing_rate: (float)
The amount of monte carlo values to mix into the targets of the network. The monte carlo values are just the
total discounted returns, and they can help reduce the time it takes for the network to update to the newly
seen values, since it is not based on bootstrapping the current network values.
"""
def __init__(self):
super().__init__()
self.pal_alpha = 0.9
self.persistent_advantage_learning = False
self.monte_carlo_mixing_rate = 0.1
class PALAgentParameters(DQNAgentParameters):
def __init__(self):
super().__init__()
self.algorithm = PALAlgorithmParameters()
self.memory = EpisodicExperienceReplayParameters()
@property
def path(self):
return 'rl_coach.agents.pal_agent:PALAgent'
# Persistent Advantage Learning - https://arxiv.org/pdf/1512.04860.pdf
class PALAgent(ValueOptimizationAgent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)
self.alpha = agent_parameters.algorithm.pal_alpha
self.persistent = agent_parameters.algorithm.persistent_advantage_learning
self.monte_carlo_mixing_rate = agent_parameters.algorithm.monte_carlo_mixing_rate
def learn_from_batch(self, batch):
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
# next state values
q_st_plus_1_target, q_st_plus_1_online = self.networks['main'].parallel_prediction([
(self.networks['main'].target_network, batch.next_states(network_keys)),
(self.networks['main'].online_network, batch.next_states(network_keys))
])
selected_actions = np.argmax(q_st_plus_1_online, 1)
v_st_plus_1_target = np.max(q_st_plus_1_target, 1)
# current state values
q_st_target, q_st_online = self.networks['main'].parallel_prediction([
(self.networks['main'].target_network, batch.states(network_keys)),
(self.networks['main'].online_network, batch.states(network_keys))
])
v_st_target = np.max(q_st_target, 1)
# calculate TD error
TD_targets = np.copy(q_st_online)
total_returns = batch.n_step_discounted_rewards()
for i in range(batch.size):
TD_targets[i, batch.actions()[i]] = batch.rewards()[i] + \
(1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * \
q_st_plus_1_target[i][selected_actions[i]]
advantage_learning_update = v_st_target[i] - q_st_target[i, batch.actions()[i]]
next_advantage_learning_update = v_st_plus_1_target[i] - q_st_plus_1_target[i, selected_actions[i]]
# Persistent Advantage Learning or Regular Advantage Learning
if self.persistent:
TD_targets[i, batch.actions()[i]] -= self.alpha * min(advantage_learning_update, next_advantage_learning_update)
else:
TD_targets[i, batch.actions()[i]] -= self.alpha * advantage_learning_update
# mixing monte carlo updates
monte_carlo_target = total_returns[i]
TD_targets[i, batch.actions()[i]] = (1 - self.monte_carlo_mixing_rate) * TD_targets[i, batch.actions()[i]] \
+ self.monte_carlo_mixing_rate * monte_carlo_target
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets)
total_loss, losses, unclipped_grads = result[:3]
return total_loss, losses, unclipped_grads