forked from meta-llama/llama
-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathinference.py
64 lines (54 loc) · 2.31 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import time
import json
import torch
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from tqdm import tqdm
from pathlib import Path
import os
from llama import ModelArgs, Tokenizer, Transformer, LLaMA
class LLaMAInference:
def __init__(self, llama_path, model, device_map="auto", **kwargs):
state_dict = os.path.join(llama_path, model, "state_dict.pth")
params_file = os.path.join(llama_path, model, "params.json")
tokenizer_path = os.path.join(llama_path, "tokenizer.model")
assert os.path.exists(os.path.join(llama_path, model)), f"Model {model} does not exist"
assert os.path.exists(state_dict), f"Model {model} does not exist"
assert os.path.exists(params_file), f"Model {model} does not exist"
assert os.path.exists(tokenizer_path), f"Missing tokenizer in {llama_path}"
with open(params_file, "r") as f:
params = json.load(f)
model_args = dict(
max_seq_len=2048,
max_batch_size=1,
**params
)
model_args.update(kwargs)
model_args = ModelArgs(**model_args)
self.tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = self.tokenizer.n_words
with init_empty_weights():
torch.set_default_tensor_type(torch.HalfTensor)
model = Transformer(model_args)
torch.set_default_tensor_type(torch.FloatTensor)
self.model = load_checkpoint_and_dispatch(
model,
state_dict,
device_map=device_map,
no_split_module_classes=["TransformerBlock"]
)
self.generator = LLaMA(self.model, self.tokenizer)
def generate(self, texts, temperature=0.8, top_p=0.95, max_length=256, repetition_penalty=1, stop_ids=None, stop_words=None):
start_time = time.time()
results, stats = self.generator.generate(
texts,
max_gen_len=max_length,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
stop_ids=stop_ids,
stop_words=stop_words
)
end_time = time.time()
stats["total_seconds"] = end_time - start_time
stats["tok/s"] = max(stats["num_generated_tokens"]) / stats["total_seconds"]
return results, stats