-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathPPO_train.py
60 lines (44 loc) · 1.66 KB
/
PPO_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import gym
import Chargym_Charging_Station
import argparse
import numpy
from stable_baselines3 import DDPG
from stable_baselines3.common.noise import NormalActionNoise
import gym
import numpy as np
import os
from stable_baselines3 import PPO
from stable_baselines3.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise
from stable_baselines3 import DDPG, PPO
from stable_baselines3.common.evaluation import evaluate_policy
import time
models_dir = f"models/PPO-{int(time.time())}"
logdir = f"logs/PPO-{int(time.time())}"
if not os.path.exists(models_dir):
os.makedirs(models_dir)
if not os.path.exists(logdir):
os.makedirs(logdir)
env = gym.make('ChargingEnv-v0')
# the noise objects for DDPG
n_actions = env.action_space.shape[-1]
param_noise = None
action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.5) * np.ones(n_actions))
# model = DDPG(MlpPolicy, env, verbose=1, action_noise=action_noise, tensorboard_log=logdir)
model = PPO("MlpPolicy", env, verbose=1, tensorboard_log=logdir)
TIMESTEPS = 20000
for i in range(1, 50):
model.learn(total_timesteps=TIMESTEPS, reset_num_timesteps=False, tb_log_name="PPO")
model.save(f"{models_dir}/{TIMESTEPS * i}")
env.close
#del model # remove to demonstrate saving and loading
# model = DDPG.load("ddpg_Chargym", env=env)
#
# mean_reward, std_reward = evaluate_policy(model, model.get_env(), n_eval_episodes=10)
#
# # Enjoy trained agent
# obs = env.reset()
# for i in range(24):
# action, _states = model.predict(obs, deterministic=True)
# obs, rewards, dones, info = env.step(action)
# # env.render(
#aaaaa=1