-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathaudio_utils.py
568 lines (434 loc) · 17.6 KB
/
audio_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
'''
audio_utils.py
Author - Max Elliott
Helper functions for reading and writing wav files.
Hyperparameters are stored in the hyperparams class
'''
from scipy.io import wavfile
import os
import yaml
import copy
import pickle
import librosa
import librosa.display
from pyworld import decode_spectral_envelope, synthesize
import numpy as np
import torch
import matplotlib.pyplot as plt
# dataset_dir = "/Users/Max/MScProject/datasets/IEMOCAP"
# dataset_dir = "/Users/Max/MScProject/test_dir"
class hyperparams(object):
def __init__(self):
self.sr = 16000 # Sampling rate. Paper => 24000
self.n_fft = 1024 # fft points (samples)
self.frame_shift = 0.0125 # seconds
self.frame_length = 0.05 # seconds
self.hop_length = int(self.sr*self.frame_shift) # samples This is dependent on the frame_shift.
self.win_length = int(self.sr*self.frame_length) # samples This is dependent on the frame_length.
self.n_mels = 80 # Number of Mel banks to generate
self.power = 1.2 # Exponent for amplifying the predicted magnitude
self.n_iter = 100 # Number of inversion iterations
self.use_log_magnitude = True # if False, use magnitude
self.preemph = 0.97
self.config = yaml.load(open('./config.yaml', 'r'))
self.sample_set_dir = self.config['logs']['sample_dir']
self.normalise = self.config['data']['normalise']
self.max_norm_value = 3226.99139880277
self.min_norm_value = 3.8234146815389095e-10
self.sp_max_norm_value = 6.482182376067761
self.sp_min_norm_value = -18.50642857581744
# Store dictionaries used for f0 pitch transformations
if os.path.exists('./f0_dict.pkl'):
with open('./f0_dict.pkl', 'rb') as fp:
self.f0_dict = pickle.load(fp)
if os.path.exists('./f0_relative_dict.pkl'):
with open('./f0_relative_dict.pkl', 'rb') as fp:
self.f0_relative_dict = pickle.load(fp)
hp = hyperparams()
def load_wav(path):
wav = wavfile.read(path)[1]
wav = copy.deepcopy(wav)/32767.0
return wav
def save_wav(wav, path):
# wav *= 32767 / max(0.01, np.max(np.abs(wav)))
wav *= 48000
wav = np.clip(wav, -32767, 32767)
wavfile.write(path, hp.sr, wav.astype(np.int16))
def wav2spectrogram(y, sr=hp.sr):
'''
Produces log-magnitude spectrogram of audio data y
'''
spec = librosa.core.stft(y, n_fft=hp.n_fft, hop_length=hp.hop_length,
win_length=hp.win_length)
spec_mag = amp_to_db(np.abs(spec))
return spec_mag
def _normalise_mel(mel):
mel = (mel - hp.min_norm_value)/(hp.max_norm_value - hp.min_norm_value)
return mel
def _unnormalise_mel(mel):
mel = (hp.max_norm_value - hp.min_norm_value) * mel + hp.min_norm_value
return mel
def _normalise_coded_sp(sp):
sp = (sp - hp.sp_min_norm_value)/(hp.sp_max_norm_value - hp.sp_min_norm_value)
return sp
def _unnormalise_coded_sp(sp):
sp = (hp.sp_max_norm_value - hp.sp_min_norm_value) * sp + hp.sp_min_norm_value
np.clip(sp, hp.sp_min_norm_value, hp.sp_max_norm_value)
return sp
def wav2melspectrogram(y, sr = hp.sr, n_mels = hp.n_mels):
'''
y = input wav file
'''
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=n_mels,
n_fft=hp.n_fft, hop_length=hp.hop_length)
# mel_spec = librosa.core.amplitude_to_db(y)
if hp.normalise:
mel_spec = _normalise_mel(mel_spec)
return mel_spec
def spectrogram2melspectrogram(spec, n_fft=hp.n_fft, n_mels=hp.n_mels):
if isinstance(spec, torch.Tensor):
spec = spec.numpy()
mels = librosa.filters.mel(hp.sr, n_fft, n_mels=n_mels)
return mels.dot(spec**hp.power)
def melspectrogram2wav(mel):
'''
Not implemented
'''
return 0
def spectrogram2wav(spectrogram):
'''
Griffin-Lim Algorithm
spectrogram: [t, f], i.e. [t, nfft // 2 + 1]
'''
if isinstance(spectrogram, torch.Tensor):
spectrogram = spectrogram.cpu().numpy()
spectrogram = db_to_amp(spectrogram)#**hp.power
X_best = copy.deepcopy(spectrogram) # [f, t]
for i in range(hp.n_iter):
X_t = invert_spectrogram(X_best)
# print(X_t.shape())
est = librosa.stft(X_t, hp.n_fft, hp.hop_length, win_length=hp.win_length) # [f, t]
phase = est / np.maximum(1e-8, np.abs(est)) # [f, t]
X_best = spectrogram * phase # [f, t]
X_t = invert_spectrogram(X_best)
return np.real(X_t)
def invert_spectrogram(spectrogram):
'''
spectrogram: [f, t]
'''
return librosa.istft(spectrogram, hp.hop_length, win_length=hp.win_length, window="hann")
def amp_to_db(spec):
return librosa.core.amplitude_to_db(spec)
def db_to_amp(spec):
return librosa.core.db_to_amplitude(spec)
def plot_spec(spec, type = 'mel'):
plt.figure(figsize=(6, 4))
if isinstance(spec, torch.Tensor):
spec = spec.cpu().numpy()
if hp.normalise:
spec = _unnormalise_mel(spec)
librosa.display.specshow(librosa.power_to_db(spec), y_axis=type, sr=hp.sr,
hop_length=hp.hop_length)
# fmin=None, fmax=4000)
plt.colorbar(format='%+2.0f dB')
plt.title('Power spectrogram')
plt.show()
def save_spec(spec, model_name, filename, type = 'mel'):
'''
spec: [n_feats, seq_len] - np.array or torch.Tensor
model_name: str - just the basename, no directory
filename: str
'''
fig = plt.figure(figsize=(6,4))
if isinstance(spec, torch.Tensor):
spec = spec.cpu().numpy()
if hp.normalise:
spec = _unnormalise_mel(spec)
path = os.path.join(hp.sample_set_dir, model_name)
if not os.path.exists(path):
os.makedirs(path)
path = os.path.join(path, filename)
np.save(path, spec)
# print("Saved.")
def save_spec_plot(spec, model_name, filename, type = 'mel'):
'''
spec: [n_feats, seq_len] - np.array or torch.Tensor
model_name: str - just the basename, no directory
filename: str
'''
fig = plt.figure(figsize=(6,4))
if isinstance(spec, torch.Tensor):
spec = spec.cpu().numpy()
if hp.normalise:
spec = _unnormalise_mel(spec)
librosa.display.specshow(librosa.power_to_db(spec), y_axis=type, sr=hp.sr,
hop_length=hp.hop_length)
# fmin=None, fmax=4000)
plt.colorbar(format='%+2.0f dB')
plt.title('Power spectrogram')
path = os.path.join(hp.sample_set_dir, model_name)
if not os.path.exists(path):
os.makedirs(path)
path = os.path.join(path, filename)
plt.savefig(path)
plt.close(fig)
plt.close("all")
# print("Saved.")
def save_world_wav(feats, filename):
# feats = [f0, sp, ap, sp_coded, labels]
if isinstance(feats[3], torch.Tensor):
feats[3] = feats[3].cpu().numpy()
if hp.normalise:
feats[3] = _unnormalise_coded_sp(feats[3])
# path = os.path.join(hp.sample_set_dir, model_name)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
# path = os.path.join(path, filename)
feats[3] = np.ascontiguousarray(feats[3], dtype=np.float64)
decoded_sp = decode_spectral_envelope(feats[3], hp.sr, fft_size=hp.n_fft)
wav = synthesize(feats[0], decoded_sp, feats[1], hp.sr)
save_wav(wav, filename)
def f0_pitch_conversion(f0, source_labels, target_labels):
'''
Logarithm Gaussian normalization for Pitch Conversions
(np.array) f0 - array to be converted
(tuple) source_labels - (emo, speaker) discrete labels
(tuple) target_labels - (emo, speaker) discrete labels
If doing relative-LGNT, then speaker can be anything becuase its not used
'''
src_emo = int(source_labels[0])
src_spk = int(source_labels[1])
trg_emo = int(target_labels[0])
trg_spk = int(target_labels[1])
# ----- Absolute transformation ----- #
# mean_log_src = hp.f0_dict[src_emo][src_spk][0]
# std_log_src = hp.f0_dict[src_emo][src_spk][1]
# mean_log_target = hp.f0_dict[trg_emo][src_spk][0]
# std_log_target = hp.f0_dict[trg_emo][src_spk][1]
#
# f0_converted = np.exp((np.ma.log(f0) - mean_log_src) / std_log_src * std_log_target + mean_log_target)
# ----- Proposed relative transformation ----- #
logf0 = np.ma.log(f0)
mean = np.mean(logf0)
var = np.var(logf0)
f0_converted = np.exp((logf0-mean)/var * (hp.f0_relative_dict[src_emo][trg_emo][1]+var) + mean + hp.f0_relative_dict[src_emo][trg_emo][0])
return f0_converted
if __name__ == '__main__':
#####################################
# PLOTTING CONVERTED SPECTROGRAMS #
#####################################
file = '../data/audio/Ses01F_impro02_F014.wav' #8
wav = load_wav(file)
spec = wav2melspectrogram(wav)
print("Max = ", np.max(librosa.power_to_db(spec)))
print("Min = ", np.min(librosa.power_to_db(spec)))
spec = spec[:, 16:-16]
print("Original size =", spec.shape)
fig = plt.figure(figsize=(9, 13))
ax1 = fig.add_subplot(4, 2, 1)
plt.subplot(4, 2, 1)
librosa.display.specshow(librosa.power_to_db(spec), y_axis='mel', sr=hp.sr,
hop_length=hp.hop_length, vmax=-8.47987, vmin=-100.0)
# fmin=None, fmax=4000)
# plt.colorbar(format='%+2.0f dB')
plt.title('1) Original (sad)')
# world3_4d_newloader_cont_080_testSet
file = './samples/final/3-emo_spec_100/Ses01F_impro02_F014_1to2.wav'
wav = load_wav(file)
spec = wav2melspectrogram(wav)
print("Max = ", np.max(librosa.power_to_db(spec)))
print("Min = ", np.min(librosa.power_to_db(spec)))
ax2 = fig.add_subplot(4, 2, 2)
librosa.display.specshow(librosa.power_to_db(spec), y_axis='mel', sr=hp.sr,
hop_length=hp.hop_length, vmax = -8.47987, vmin= -100.0)
# fmin=None, fmax=4000)
# plt.colorbar(format='%+2.0f dB')
plt.title('2) 3 Emotion (happy)')
file = './samples/f0s/world2_crop_4d_200_200_testSet/Ses01F_impro02_F014_1to1.wav'
wav = load_wav(file)
spec = wav2melspectrogram(wav)
print("Max = ", np.max(librosa.power_to_db(spec)))
print("Min = ", np.min(librosa.power_to_db(spec)))
ax3 = fig.add_subplot(4, 2, 3, sharey=ax1)
librosa.display.specshow(librosa.power_to_db(spec), y_axis='mel', sr=hp.sr,
hop_length=hp.hop_length, vmax = -8.47987, vmin= -100.0)
# fmin=None, fmax=4000)
# plt.colorbar(format='%+2.0f dB')
plt.title('3) 2 Emotion (sad)')
file = './samples/final/3-emo_spec_100/Ses01F_impro02_F014_1to1.wav'
# file = './samples/final/3-emo_spec_100/Ses01F_impro02_F014_1to2.wav'
wav = load_wav(file)
spec = wav2melspectrogram(wav)
print("Max = ", np.max(librosa.power_to_db(spec)))
print("Min = ", np.min(librosa.power_to_db(spec)))
# if hp.normalise:
# spec = _unnormalise_mel(spec)
ax4 = fig.add_subplot(4, 2, 4, sharey=ax1)
librosa.display.specshow(librosa.power_to_db(spec), y_axis='mel', sr=hp.sr,
hop_length=hp.hop_length, vmax = -8.47987, vmin= -100.0)
# fmin=None, fmax=4000)
# plt.colorbar(format='%+2.0f dB')
plt.title('4) 3 Emotion (sad)')
#
file = './samples/f0s/world2_crop_4d_200_200_testSet/Ses01F_impro02_F014_1to0.wav'
wav = load_wav(file)
spec = wav2melspectrogram(wav)
print("Max = ", np.max(librosa.power_to_db(spec)))
print("Min = ", np.min(librosa.power_to_db(spec)))
# if hp.normalise:
# spec = _unnormalise_mel(spec)
ax4 = fig.add_subplot(4, 2, 5, sharey=ax1)
librosa.display.specshow(librosa.power_to_db(spec), y_axis='mel', sr=hp.sr,
hop_length=hp.hop_length, vmax = -8.47987, vmin= -100.0)
# fmin=None, fmax=4000)
# plt.colorbar(format='%+2.0f dB')
plt.title('5) 2 Emotion (angry)')
file = './samples/final/3-emo_spec_100/Ses01F_impro02_F014_1to0.wav'
wav = load_wav(file)
spec = wav2melspectrogram(wav)
print("Max = ", np.max(librosa.power_to_db(spec)))
print("Min = ", np.min(librosa.power_to_db(spec)))
# if hp.normalise:
# spec = _unnormalise_mel(spec)
ax4 = fig.add_subplot(4, 2, 6, sharey=ax1)
librosa.display.specshow(librosa.power_to_db(spec), y_axis='mel', sr=hp.sr,
hop_length=hp.hop_length, vmax = -8.47987, vmin= -100.0)
# fmin=None, fmax=4000)
# plt.colorbar(format='%+2.0f dB',orientation='horizontal')
plt.title('6) 3 Emotion (angry)')
cbaxes = fig.add_subplot(4,2,8)
# cbaxes = fig.add_axes([0.8, 0.1, 0.03, 0.8])
# cb = plt.colorbar(ax4, format='%+2.0f dB')
plt.colorbar(format='%+2.0f dB',orientation='horizontal')
plt.savefig('../graphs/specs/All+cb.png')
plt.close(fig)
plt.close("all")
######################################
## CALCULATE RELATIVE F0 STATS ###
######################################
#
# emo2emo_dict = {}
#
# for e1 in range(0,4):
#
# emo2emo_dict[e1] = {}
#
# for e2 in range(0,4):
#
# mean_list = []
# std_list = []
#
# for s in range(0,10):
# mean_diff = hp.f0_dict[e2][s][0] - hp.f0_dict[e1][s][0]
# std_diff = hp.f0_dict[e2][s][1] - hp.f0_dict[e1][s][1]
# mean_list.append(mean_diff)
# std_list.append(std_diff)
#
# mean_mean = np.mean(mean_list)
# std_mean = np.mean(std_list)
# emo2emo_dict[e1][e2] = (mean_mean, std_mean)
#
# for tag, val in emo2emo_dict.items():
# print(f'Emotion {tag} stats:')
# for tag2, val2 in val.items():
# print(f'{tag2} = {val2[0]}, {val2[1]}')
#
# with open('f0_relative_dict2.pkl', 'wb') as f:
# pickle.dump(emo2emo_dict, f, pickle.HIGHEST_PROTOCOL)
#######################################
### CODE FOR F0 EXPERIMENTS ###
#######################################
# for tag, val in hp.f0_dict.items():
# print(f'Emotion {tag} stats:')
# for tag2, val2 in val.items():
# print(f'{tag2} & {val2[0]:.3f} & {val2[1]:.3f} \\\\ \hline')
#
# for tag, val in hp.f0_relative_dict.items():
# print(f'Emotion {tag} stats:')
# for tag2, val2 in val.items():
# print(f'{tag2} & {val2[0]:.3f} & {val2[1]:.3f}')
#
# files = librosa.util.find_files("/Users/Max/MScProject/data/f0", ext = "npy")
# # basenames = [os.path.basename(f) for f in files]
# print(len(files))
# f0s = [(np.load(f), np.load(os.path.join("/Users/Max/MScProject/data/labels",os.path.basename(f)))[0]) \
# for f in files \
# if np.load(os.path.join("/Users/Max/MScProject/data/labels",os.path.basename(f)))[1]==0]
# print(len(f0s))
# print(f0s[0][0].shape)
#
# labels = [x[1] for x in f0s]
# f0s = [x[0] for x in f0s]
# angry = []
# for i,f0 in enumerate(f0s):
# if labels[i] == 0:
# angry.append(f0)
#
# conv_cat = np.ma.log(np.concatenate(angry))
# # conv_cat = np.concatenate(converted)
# conv_cat_no0s = []
#
# for i,v in enumerate(conv_cat):
# if v != 0:
# conv_cat_no0s.append(v)
# # print(conv_cat_no0s[0:300])
# log_f0s_mean = np.nanmean(conv_cat_no0s)
# log_f0s_std = np.nanvar(conv_cat_no0s)
#
# print("Mean =", log_f0s_mean)
# print("STD =", log_f0s_std)
# for i in range(0,4):
# # f0s_copy = [np.copy(f0) for f0 in f0s]
# print("Emotion: ", i)
# originals = []
# converted = []
# for j, f0 in enumerate(f0s):
#
# # if labels[j] == i:
# # originals.append(f0)
# converted.append(f0_pitch_conversion(f0,(labels[j],0),(i,0)))
#
# # for i,val in enumerate(originals[25]):
# # print(np.ma.log(val), ", ", np.ma.log((converted[25][i])))
#
# # for i,val in enumerate(converted[0]):
# # print(np.ma.log(val), ", ", np.ma.log((f0s[0][i])))
#
# # print(len(converted))
#
# conv_cat = np.ma.log(np.concatenate(converted))
# # conv_cat = np.concatenate(converted)
# conv_cat_no0s = []
#
# for i,v in enumerate(conv_cat):
# if v != 0:
# conv_cat_no0s.append(v)
# # print(conv_cat_no0s[0:300])
# log_f0s_mean = np.nanmean(conv_cat_no0s)
# log_f0s_std = np.nanvar(conv_cat_no0s)
# sum=0
# for val in conv_cat:
# sum += val
#
# print(sum)
# print(sum/len(conv_cat))
# print(log_f0s_mean)
# print(log_f0s_std)
# for i,val in enumerate(f0s_copy[0]):
# print(val, ", ", converted[0][i])
# print("{:.2f}".format(f0s_copy[0]))
# print("{:.2f}".format(converted[0]))
# # files = [os.path.basename(f) for f in files]
# print(files)
# numbers = []
# for f in files:
# # numbers.append(f[-5])
# if f[-8] != '3':
# # if f[-5] != '0':
#
# name = os.path.basename(f)[:-10] + os.path.basename(f)[-8:]
# numbers.append(name)
# os.rename(f, "/Users/Max/MScProject/StarGAN-Emotional-VC/samples/DA/all/3-emo-augmented/" + name)
# # os.rename(f, "/Users/Max/MScProject/StarGAN-Emotional-VC/samples/DA/all/actual/" + name)
#
# print(numbers)