-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuncalc.js
190 lines (150 loc) · 4.93 KB
/
suncalc.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*
(c) 2011-2014, Vladimir Agafonkin
SunCalc is a JavaScript library for calculating sun/mooon position and light phases.
https://github.com/mourner/suncalc
Glen - Moon and other unused calcs removed.
*/
var createSunCalc = function () {
"use strict";
// shortcuts for easier to read formulas
var PI = Math.PI,
sin = Math.sin,
cos = Math.cos,
tan = Math.tan,
asin = Math.asin,
atan = Math.atan2,
acos = Math.acos,
rad = PI / 180;
// sun calculations are based on http://aa.quae.nl/en/reken/zonpositie.html formulas
// date/time constants and conversions
var dayMs = 1000 * 60 * 60 * 24,
J1970 = 2440588,
J2000 = 2451545;
function toJulian(date) {
return date.valueOf() / dayMs - 0.5 + J1970;
}
function fromJulian(j) {
return new Date((j + 0.5 - J1970) * dayMs);
}
function toDays(date) {
return toJulian(date) - J2000;
}
// general calculations for position
var e = rad * 23.4397; // obliquity of the Earth
function rightAscension(l, b) {
return atan(sin(l) * cos(e) - tan(b) * sin(e), cos(l));
}
function declination(l, b) {
return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l));
}
//function azimuth(H, phi, dec) { return atan(sin(H), cos(H) * sin(phi) - tan(dec) * cos(phi)); }
//function altitude(H, phi, dec) { return asin(sin(phi) * sin(dec) + cos(phi) * cos(dec) * cos(H)); }
//
//function siderealTime(d, lw) { return rad * (280.16 + 360.9856235 * d) - lw; }
//
// general sun calculations
function solarMeanAnomaly(d) {
return rad * (357.5291 + 0.98560028 * d);
}
function eclipticLongitude(M) {
var C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 0.0003 * sin(3 * M)), // equation of center
P = rad * 102.9372; // perihelion of the Earth
return M + C + P + PI;
}
//function sunCoords(d) {
//
// var M = solarMeanAnomaly(d),
// L = eclipticLongitude(M);
//
// return {
// dec: declination(L, 0),
// ra: rightAscension(L, 0)
// };
//}
//
var SunCalc = {};
var _knownTimes = {};
// sun times configuration (angle, morning name, evening name)
var _times = (SunCalc.times = [
[-0.833, "sunrise", "sunset"],
//[ -0.3, 'sunriseEnd', 'sunsetStart' ],
//[ -6, 'dawn', 'dusk' ],
//[ -12, 'nauticalDawn', 'nauticalDusk'],
//[ -18, 'nightEnd', 'night' ],
//[ 6, 'goldenHourEnd', 'goldenHour' ]
]);
// calculations for sun times
var J0 = 0.0009;
function julianCycle(d, lw) {
return Math.round(d - J0 - lw / (2 * PI));
}
function approxTransit(Ht, lw, n) {
return J0 + (Ht + lw) / (2 * PI) + n;
}
function solarTransitJ(ds, M, L) {
return J2000 + ds + 0.0053 * sin(M) - 0.0069 * sin(2 * L);
}
function hourAngle(h, phi, d) {
return acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d)));
}
// returns set time for the given sun altitude
function getSetJ(h, lw, phi, dec, n, M, L) {
var w = hourAngle(h, phi, dec),
a = approxTransit(w, lw, n);
return solarTransitJ(a, M, L);
}
// calculates sun times for a given date and latitude/longitude
SunCalc.getTimes = function (date, lat, lng) {
const key = `${date.toISOString()}${lat}${lng}`;
if (_knownTimes[key]) {
// console.log("%csuncalc re-use known:", "color:lightgreen", key);
return _knownTimes[key];
}
// Glen - override
if (!common.locationKnown) {
var dt2 = dayjs(date).toDate();
dt2.setHours(18, 30, 0, 0);
var dt3 = dayjs(date).toDate();
dt3.setHours(6, 30, 0, 0);
return {
sunset: dt2,
sunrise: dt3,
};
}
var lw = rad * -lng,
phi = rad * lat,
d = toDays(date),
n = julianCycle(d, lw),
ds = approxTransit(0, lw, n),
M = solarMeanAnomaly(ds),
L = eclipticLongitude(M),
dec = declination(L, 0),
Jnoon = solarTransitJ(ds, M, L),
i,
len,
time,
Jset,
Jrise;
var result = {
solarNoon: fromJulian(Jnoon),
nadir: fromJulian(Jnoon - 0.5),
};
for (i = 0, len = _times.length; i < len; i += 1) {
time = _times[i];
Jset = getSetJ(time[0] * rad, lw, phi, dec, n, M, L);
Jrise = Jnoon - (Jset - Jnoon);
result[time[1]] = fromJulian(Jrise);
result[time[2]] = fromJulian(Jset);
}
// console.log("%csuncalc sunset:", "color:lightgreen", result.sunset, key);
_knownTimes[key] = result;
return result;
};
// export as AMD module / Node module / browser variable
// if (typeof define === 'function' && define.amd) define(SunCalc);
// else if (typeof module !== 'undefined') module.exports = SunCalc;
// else
// window.SunCalc = SunCalc;
return SunCalc;
};
var sunCalculator = createSunCalc();