-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdatamodules.py
197 lines (169 loc) · 7.7 KB
/
datamodules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from collections import OrderedDict
from typing import Dict, List, Optional, Union
import hydra
from omegaconf import DictConfig
from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader, Dataset
from src.datamodules.components.transforms import TransformsWrapper
class SingleDataModule(LightningDataModule):
"""Example of LightningDataModule for single dataset.
A DataModule implements 5 key methods:
def prepare_data(self):
# things to do on 1 GPU/TPU (not on every GPU/TPU in DDP)
# download data, pre-process, split, save to disk, etc...
def setup(self, stage):
# things to do on every process in DDP
# load data, set variables, etc...
def train_dataloader(self):
# return train dataloader
def val_dataloader(self):
# return validation dataloader
def test_dataloader(self):
# return test dataloader
def predict_dataloader(self):
# return predict dataloader
def teardown(self):
# called on every process in DDP
# clean up after fit or test
This allows you to share a full dataset without explaining how to download,
split, transform and process the data.
Read the docs:
https://pytorch-lightning.readthedocs.io/en/latest/data/datamodule.html
"""
def __init__(
self, datasets: DictConfig, loaders: DictConfig, transforms: DictConfig
) -> None:
"""DataModule with standalone train, val and test dataloaders.
Args:
datasets (DictConfig): Datasets config.
loaders (DictConfig): Loaders config.
transforms (DictConfig): Transforms config.
"""
super().__init__()
self.cfg_datasets = datasets
self.cfg_loaders = loaders
self.transforms = transforms
self.train_set: Optional[Dataset] = None
self.valid_set: Optional[Dataset] = None
self.test_set: Optional[Dataset] = None
self.predict_set: Dict[str, Dataset] = OrderedDict()
def _get_dataset_(
self, split_name: str, dataset_name: Optional[str] = None
) -> Dataset:
transforms = TransformsWrapper(self.transforms.get(split_name))
cfg = self.cfg_datasets.get(split_name)
if dataset_name:
cfg = cfg.get(dataset_name)
dataset: Dataset = hydra.utils.instantiate(cfg, transforms=transforms)
return dataset
def setup(self, stage: Optional[str] = None) -> None:
"""Load data. Set variables: `self.train_set`, `self.valid_set`,
`self.test_set`, `self.predict_set`.
This method is called by lightning with both `trainer.fit()` and
`trainer.test()`, so be careful not to execute things like random split
twice!
"""
# load and split datasets only if not loaded already
if not self.train_set and not self.valid_set and not self.test_set:
self.train_set = self._get_dataset_("train")
self.valid_set = self._get_dataset_("valid")
self.test_set = self._get_dataset_("test")
# load predict datasets only if it exists in config
if (stage == "predict") and self.cfg_datasets.get("predict"):
for dataset_name in self.cfg_datasets.get("predict").keys():
self.predict_set[dataset_name] = self._get_dataset_(
"predict", dataset_name=dataset_name
)
def train_dataloader(
self,
) -> Union[DataLoader, List[DataLoader], Dict[str, DataLoader]]:
return DataLoader(self.train_set, **self.cfg_loaders.get("train"))
def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
return DataLoader(self.valid_set, **self.cfg_loaders.get("valid"))
def test_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
return DataLoader(self.test_set, **self.cfg_loaders.get("test"))
def predict_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
loaders = []
for _, dataset in self.predict_set.items():
loaders.append(
DataLoader(dataset, **self.cfg_loaders.get("predict"))
)
return loaders
def teardown(self, stage: Optional[str] = None):
"""Clean up after fit or test."""
pass
class MultipleDataModule(SingleDataModule):
def __init__(
self, datasets: DictConfig, loaders: DictConfig, transforms: DictConfig
) -> None:
"""DataModule with multiple train, val and test dataloaders.
Args:
datasets (DictConfig): Datasets config.
loaders (DictConfig): Loaders config.
transforms (DictConfig): Transforms config.
"""
super().__init__(
datasets=datasets, loaders=loaders, transforms=transforms
)
self.train_set: Optional[Dict[str, Dataset]] = None
self.valid_set: Optional[Dict[str, Dataset]] = None
self.test_set: Optional[Dict[str, Dataset]] = None
self.predict_set: Dict[str, Dataset] = OrderedDict()
def setup(self, stage: Optional[str] = None) -> None:
"""Load data. Set variables: `self.train_set`, `self.valid_set`,
`self.test_set`, `self.predict_set`.
This method is called by lightning with both `trainer.fit()` and
`trainer.test()`, so be careful not to execute things like random split
twice!
"""
# load and split datasets only if not loaded already
if not self.train_set and not self.valid_set and not self.test_set:
self.train_set = OrderedDict()
for dataset_name in self.cfg_datasets.get("train").keys():
self.train_set[dataset_name] = self._get_dataset_(
"train", dataset_name=dataset_name
)
self.valid_set = OrderedDict()
for dataset_name in self.cfg_datasets.get("valid").keys():
self.valid_set[dataset_name] = self._get_dataset_(
"valid", dataset_name=dataset_name
)
self.test_set = OrderedDict()
for dataset_name in self.cfg_datasets.get("test").keys():
self.test_set[dataset_name] = self._get_dataset_(
"test", dataset_name=dataset_name
)
# load predict datasets only if it exists in config
if (stage == "predict") and self.cfg_datasets.get("predict"):
for dataset_name in self.cfg_datasets.get("predict").keys():
self.predict_set[dataset_name] = self._get_dataset_(
"predict", dataset_name=dataset_name
)
def train_dataloader(
self,
) -> Union[DataLoader, List[DataLoader], Dict[str, DataLoader]]:
loaders = dict()
for dataset_name, dataset in self.train_set.items():
loaders[dataset_name] = DataLoader(
dataset, **self.cfg_loaders.get("train")
)
return loaders
def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
loaders = []
for _, dataset in self.valid_set.items():
loaders.append(
DataLoader(dataset, **self.cfg_loaders.get("valid"))
)
return loaders
def test_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
loaders = []
for _, dataset in self.test_set.items():
loaders.append(DataLoader(dataset, **self.cfg_loaders.get("test")))
return loaders
def predict_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
loaders = []
for _, dataset in self.predict_set.items():
loaders.append(
DataLoader(dataset, **self.cfg_loaders.get("predict"))
)
return loaders