-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_test_dpsr.py
229 lines (174 loc) · 8.13 KB
/
demo_test_dpsr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os.path
import glob
import cv2
import logging
import numpy as np
from datetime import datetime
from collections import OrderedDict
from scipy.io import loadmat
import torch
from utils import utils_deblur
from utils import utils_logger
from utils import utils_image as util
from models.network_srresnet import SRResNet
'''
Spyder (Python 3.6)
PyTorch 0.4.1
Windows 10
Testing code of DPSR [x2,x3,x4] (and DPSRGAN [x4]) on
BSD68 with SRResNet+ [x2,x3,x4] (and SRGAN+ [x4]).
Three types of blur kernels, i.e.,
(g) Gaussian blur kernels,
(m) motion blur kernels, and
(d) disk blur kernels,
are considered.
-- + testsets
+ -- + BSD68
+ -- + GT # ground truth images
+ -- + x2_d # low-resolution images of scale factor 2 with disk blur kernels
+ -- + x3_d
+ -- + x4_d
+ -- + x2_g
+ -- + x3_g # low-resolution images of scale factor 3 with Gaussian blur kernels
+ -- + x4_g
+ -- + x2_m
+ -- + x3_m
+ -- + x4_m # low-resolution images of scale factor 4 with motion blur kernels
You can generate x2_d, ..., x4_m by generate_blurry_LR_images.m with Matlab or
you can download x2_d, ..., x4_m from:
https://drive.google.com/file/d/1IThQ0kZGL71pfIry5qzCoW0DftqLleOC/view?usp=sharing
For more information, please refer to the following paper.
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={},
year={2019}
}
% If you have any question, please feel free to contact with me.
% Kai Zhang (e-mail: [email protected]; github: https://github.com/cszn)
by Kai Zhang (03/03/2019)
'''
def main():
# --------------------------------
# let's start!
# --------------------------------
utils_logger.logger_info('test_dpsr', log_path='test_dpsr.log')
logger = logging.getLogger('test_dpsr')
# basic setting
# ================================================
sf = 4 # scale factor
noise_level_img = 0/255.0 # noise level of low quality image, default 0
noise_level_model = noise_level_img # noise level of model, default 0
show_img = True
use_srganplus = True # 'True' for SRGAN+ (x4) and 'False' for SRResNet+ (x2,x3,x4)
testsets = 'testsets'
testset_current = 'BSD68'
if use_srganplus and sf == 4:
model_prefix = 'DPSRGAN'
save_suffix = 'dpsrgan'
else:
model_prefix = 'DPSR'
save_suffix = 'dpsr'
model_path = os.path.join('DPSR_models', model_prefix+'x%01d.pth' % (sf))
iter_num = 15 # number of iterations, fixed
n_channels = 3 # only color images, fixed
border = sf**2 # shave boader to calculate PSNR, fixed
# k_type = ('d', 'm', 'g')
k_type = ('m') # motion blur kernel
# ================================================
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# --------------------------------
# load model
# --------------------------------
model = SRResNet(in_nc=4, out_nc=3, nc=96, nb=16, upscale=sf, act_mode='R', upsample_mode='pixelshuffle')
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
logger.info('Model path {:s}. Testing...'.format(model_path))
# --------------------------------
# read image (img) and kernel (k)
# --------------------------------
test_results = OrderedDict()
for k_type_n in range(len(k_type)):
# --1--> L_folder, folder of Low-quality images
testsubset_current = 'x%01d_%01s' % (sf, k_type[k_type_n])
L_folder = os.path.join(testsets, testset_current, testsubset_current)
# --2--> E_folder, folder of Estimated images
E_folder = os.path.join(testsets, testset_current, testsubset_current+'_'+save_suffix)
util.mkdir(E_folder)
# --3--> H_folder, folder of High-quality images
H_folder = os.path.join(testsets, testset_current, 'GT')
test_results['psnr_'+k_type[k_type_n]] = []
logger.info(L_folder)
idx = 0
for im in os.listdir(os.path.join(L_folder)):
if im.endswith('.jpg') or im.endswith('.bmp') or im.endswith('.png'):
# --------------------------------
# (1) img_L
# --------------------------------
idx += 1
img_name, ext = os.path.splitext(im)
img_L = util.imread_uint(os.path.join(L_folder, im), n_channels=n_channels)
util.imshow(img_L) if show_img else None
np.random.seed(seed=0) # for reproducibility
img_L = util.unit2single(img_L) + np.random.normal(0, noise_level_img, img_L.shape)
# --------------------------------
# (2) kernel
# --------------------------------
k = loadmat(os.path.join(L_folder, img_name+'.mat'))['kernel']
k = k.astype(np.float32)
k /= np.sum(k)
# --------------------------------
# (3) get upperleft, denominator
# --------------------------------
upperleft, denominator = utils_deblur.get_uperleft_denominator(img_L, k)
# --------------------------------
# (4) get rhos and sigmas
# --------------------------------
rhos, sigmas = utils_deblur.get_rho_sigma(sigma=max(0.255/255., noise_level_model), iter_num=iter_num)
# --------------------------------
# (5) main iteration
# --------------------------------
z = img_L
rhos = np.float32(rhos)
sigmas = np.float32(sigmas)
for i in range(iter_num):
# --------------------------------
# step 1, Eq. (9) // FFT
# --------------------------------
rho = rhos[i]
if i != 0:
z = util.imresize_np(z, 1/sf, True)
z = np.real(np.fft.ifft2((upperleft + rho*np.fft.fft2(z, axes=(0, 1)))/(denominator + rho), axes=(0, 1)))
# imsave('LR_deblurred_%02d.png'%i, np.clip(z, 0, 1))
# --------------------------------
# step 2, Eq. (12) // super-resolver
# --------------------------------
sigma = torch.from_numpy(np.array(sigmas[i]))
img_L = util.single2tensor4(z)
noise_level_map = torch.ones((1, 1, img_L.size(2), img_L.size(3)), dtype=torch.float).mul_(sigma)
img_L = torch.cat((img_L, noise_level_map), dim=1)
img_L = img_L.to(device)
# with torch.no_grad():
z = model(img_L)
z = util.tensor2single(z)
# --------------------------------
# (6) img_E
# --------------------------------
img_E = util.single2uint(z) # np.uint8((z * 255.0).round())
# --------------------------------
# (7) img_H
# --------------------------------
img_H = util.imread_uint(os.path.join(H_folder, img_name[:7]+'.png'), n_channels=n_channels)
util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None
psnr = util.calculate_psnr(img_E, img_H, border=border)
logger.info('{:->4d}--> {:>10s}, {:.2f}dB'.format(idx, im, psnr))
test_results['psnr_'+k_type[k_type_n]].append(psnr)
util.imsave(img_E, os.path.join(E_folder, img_name+ext))
ave_psnr = sum(test_results['psnr_'+k_type[k_type_n]]) / len(test_results['psnr_'+k_type[k_type_n]])
logger.info('------> Average PSNR(RGB) of ({} - {}) is : {:.2f} dB'.format(testset_current, testsubset_current, ave_psnr))
if __name__ == '__main__':
main()