-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBenchmarkedMetrics.R
129 lines (122 loc) · 4.25 KB
/
BenchmarkedMetrics.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#' MetaMetrics – Binary-Classification Performance-Metrics Benchmarking (Metrics)
#' Copyright (C) 2017-2019 Gürol Canbek
#' This file is licensed under
#'
#' GNU Affero General Public License v3.0, GNU AGPLv3
#'
#' This program is free software: you can redistribute it and/or modify
#' it under the terms of the GNU Affero General Public License as published
#' by the Free Software Foundation, either version 3 of the License, or
#' (at your option) any later version.
#'
#' This program is distributed in the hope that it will be useful,
#' but WITHOUT ANY WARRANTY; without even the implied warranty of
#' MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#' GNU Affero General Public License for more details.
#'
#' You should have received a copy of the GNU Affero General Public License
#' along with this program. If not, see <https://www.gnu.org/licenses/>.
#'
#' See the license file in <https://github.com/gurol/metametrics>
#'
#' @author Gürol Canbek, <[email protected]>
#' @references <http://gurol.canbek.com>
#' @keywords binary classification, machine learning, performance metrics, meta-metrics
#' @title MetaMetrics – Binary-Classification Performance-Metrics Benchmarking (Metrics)
#' @date 25 February 2019
#' @version 1.1
#' @note version history
#' 1.1, 25 February 2019,
#' 1.0, 15 May 2018, The first version
#' @description Information and some paremeters for the benchmarked 13 performance metrics
source('TasKarPlot.R')
source('utils.R')
benchmark.metrics <- data.frame(
Colors.Level=c(rep(metric.colors[1], 5), # Base level
rep(metric.colors[2], 7), # 1st level
metric.colors[3]), # 2nd level
Colors=c(
rep(metric.colors[1], 4), '#f35e5a', # Base level
'#c78006', '#829d05', '#17b12b', '#18b78d', '#15abdc', '#5086ff', # 1st lev.
'#d052fa',
'#fc42b6'), # 2nd level
Marker.Letters=c(
# 1 2 3 4 5
# P...p V v A
80, 112, 86, 118, 65, # Base level
# 6 7 8 9 10 11 12
# i m B G I F C
105, 109, 66, 71, 73, 70, 67, # 1st level
# 13
# M
77), # 2nd level
Marker.Shapes = c(
# 1 2 3 4 5
# P...p V v +
80, 112, 86, 118, 3, # Base level
# 6 7 8 9 10 11 12
# ^ v x o <> [] [.]
2, 6, 4, 1, 5, 0, 15, # 1st level
# 13
# (.)
20), # 2nd level
stringsAsFactors=FALSE
)
benchmark.metrics.names <- c(
'TPR', 'TNR', 'PPV', 'NPV', 'ACC', # Base measures
'INFORM', 'MARK', 'BACC', 'G', 'nMI', 'F1', 'CK', # 1st
'MCC')
benchmark.metrics.names.group1 <- benchmark.metrics.names[
!benchmark.metrics.names %in% c('TNR', 'PPV', 'NPV', 'MARK')]
row.names(benchmark.metrics) <- benchmark.metrics.names
benchmark.metrics.cex.letters <- 1.33
# Helper function for some meta-metrics
getMetricValue<-function(name.metric, TP, FP, FN, TN)
{
P <- TP + FN
N <- FP + TN
OP <- TP + FP
ON <- FN + TN
TC <- TP + TN
FC <- FP + FN
Sn <- P + N
switch (name.metric,
TPR = TP/P,
TNR = TN/N,
PPV = TP/OP,
NPV = TN/ON,
ACC = TC/Sn,
INFORM = (TP*N + TN*P)/(P*N) - 1,
MARK = (TP*ON + TN*OP)/(OP*ON) - 1,
BACC = (TP*N + TN*P)/(2*P*N),
G = sqrt(TP*TN/(P*N)),
PREV = P/Sn,
BIAS = OP/Sn,
nMI = {
# The same as nMIari
mi <- (klogKByN(TP/Sn, P*OP/Sn^2) + klogKByN(FP/Sn, N*OP/Sn^2) +
klogKByN(FN/Sn, P*ON/Sn^2) + klogKByN(TN/Sn, N*ON/Sn^2))
hu <- -klogK(OP/Sn)-klogK(ON/Sn)
hv <- -klogK(P/Sn)-klogK(N/Sn)
nMI = 2*mi/(hu+hv)
},
F1 = 2*TP/(2*TP + FC),
CK = {
result <- 2*(TP*TN - FP*FN)/(P*ON + N*OP)
CK = ifelse(is.nan(result), 0, result)
},
nCK = {
result <- 2*(TP*TN - FP*FN)/(P*ON + N*OP)
nCK = (ifelse(is.nan(result), 0, result) + 1)/2.0
},
MCC = {
result <- (TP*TN - FP*FN)/sqrt(P*N*OP*ON)
MCC = ifelse(is.nan(result), 0, result)
},
nMCC = {
result <- (TP*TN - FP*FN)/sqrt(P*N*OP*ON)
nMCC = (ifelse(is.nan(result), 0, result) + 1)/2.0
},
stopifnot(FALSE)
)
}