forked from ifnspaml/SGDepth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstate_manager.py
185 lines (139 loc) · 6.39 KB
/
state_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import torch
import torch.optim as optim
import dataloader.file_io.get_path as get_path
from models.sgdepth import SGDepth
class ModelContext(object):
def __init__(self, model, mode):
self.model = model
self.mode_wanted = mode
def _set_mode(self, mode):
if mode == 'train':
self.model.train()
elif mode == 'eval':
self.model.eval()
def __enter__(self):
self.mode_was = 'train' if self.model.training else 'eval'
self._set_mode(self.mode_wanted)
return self.model
def __exit__(self, *_):
self._set_mode(self.mode_was)
class ModelManager(object):
def __init__(self, model):
self.model = model
def get_eval(self):
return ModelContext(self.model, 'eval')
def get_train(self):
return ModelContext(self.model, 'train')
class StateManager(object):
def __init__(self, experiment_class, model_name, device, split_pos, num_layers,
grad_scale_depth, grad_scale_seg,
weights_init, resolutions_depth, num_layers_pose,
learning_rate, weight_decay, scheduler_step_size):
self.device = device
path_getter = get_path.GetPath()
self.log_base = path_getter.get_checkpoint_path()
self.log_path = os.path.join(self.log_base, experiment_class, model_name)
self._init_training()
self._init_model(
split_pos, num_layers, grad_scale_depth, grad_scale_seg, weights_init, resolutions_depth,
num_layers_pose
)
self._init_optimizer(learning_rate, weight_decay, scheduler_step_size)
def _init_training(self):
self.epoch = 0
self.step = 0
def _init_model(self, split_pos, num_layers, grad_scale_depth, grad_scale_seg, weights_init, resolutions_depth,
num_layers_pose
):
model = SGDepth(split_pos, num_layers, grad_scale_depth, grad_scale_seg, weights_init,
resolutions_depth, num_layers_pose
)
# noinspection PyUnresolvedReferences
model = model.to(self.device)
self.model_manager = ModelManager(model)
def _init_optimizer(self, learning_rate, weight_decay, scheduler_step_size):
with self.model_manager.get_train() as model:
self.optimizer = optim.Adam(model.parameters(), learning_rate, weight_decay=weight_decay)
self.lr_scheduler = optim.lr_scheduler.StepLR(
self.optimizer, scheduler_step_size, learning_rate
)
def _state_dir_paths(self, state_dir):
return {
'model': os.path.join(self.log_base, state_dir, "model.pth"),
'optimizer': os.path.join(self.log_base, state_dir, "optim.pth"),
'scheduler': os.path.join(self.log_base, state_dir, "scheduler.pth"),
'train': os.path.join(self.log_base, state_dir, "train.pth"),
}
def store_state(self, state_dir):
print(f"Storing model state to {state_dir}:")
os.makedirs(state_dir, exist_ok=True)
paths = self._state_dir_paths(state_dir)
with self.model_manager.get_train() as model:
torch.save(model.state_dict(), paths['model'])
torch.save(self.optimizer.state_dict(), paths['optimizer'])
torch.save(self.lr_scheduler.state_dict(), paths['scheduler'])
state_train = {
'step': self.step,
'epoch': self.epoch,
}
torch.save(state_train, paths['train'])
def store_checkpoint(self):
state_dir = os.path.join(self.log_path, "checkpoints", f"epoch_{self.epoch}")
self.store_state(state_dir)
# Idea: log the model every batch to see how the training of the statistic parameters of the BN layers for the
# shared encoder effect the validation
def store_batch_checkpoint(self, batch_idx):
state_dir = os.path.join(self.log_path, "checkpoints", f"batch_{batch_idx}")
self.store_state(state_dir)
def _load_model_state(self, path):
with self.model_manager.get_train() as model:
state = model.state_dict()
to_load = torch.load(path, map_location=self.device)
for (k, v) in to_load.items():
if k not in state:
print(f" - WARNING: Model file contains unknown key {k} ({list(v.shape)})")
for (k, v) in state.items():
if k not in to_load:
print(f" - WARNING: Model file does not contain key {k} ({list(v.shape)})")
else:
state[k] = to_load[k]
model.load_state_dict(state)
def _load_optimizer_state(self, path):
state = torch.load(path, map_location=self.device)
self.optimizer.load_state_dict(state)
def _load_scheduler_state(self, path):
state = torch.load(path)
self.lr_scheduler.load_state_dict(state)
def _load_training_state(self, path):
state = torch.load(path)
self.step = state['step']
self.epoch = state['epoch']
def load(self, state_dir, disable_lr_loading=False):
"""Load model(s) from a state directory on disk
"""
print(f"Loading checkpoint from {os.path.join(self.log_base, state_dir)}:")
paths = self._state_dir_paths(state_dir)
print(f" - Loading model state from {paths['model']}:")
try:
self._load_model_state(paths['model'])
except FileNotFoundError:
print(" - Could not find model state file")
if not disable_lr_loading:
print(f" - Loading optimizer state from {paths['optimizer']}:")
try:
self._load_optimizer_state(paths['optimizer'])
except FileNotFoundError:
print(" - Could not find optimizer state file")
except ValueError:
print(" - Optimizer state file is incompatible with current setup")
print(f" - Loading scheduler state from {paths['scheduler']}:")
try:
self._load_scheduler_state(paths['scheduler'])
except FileNotFoundError:
print(" - Could not find scheduler state file")
print(f" - Loading training state from {paths['train']}:")
try:
self._load_training_state(paths['train'])
except FileNotFoundError:
print(" - Could not find training state file")