-
Notifications
You must be signed in to change notification settings - Fork 0
/
ball_calibrate.py
247 lines (194 loc) · 7.3 KB
/
ball_calibrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import cv2
import numpy as np
import time
import picamera
import picamera.array
from picamera.array import PiRGBArray
import sys
lower_bounds = [np.array([160,100,50]),
np.array([15,100,50]),
np.array([60,100,50]),
np.array([90,150,50])]
upper_bounds = [np.array([180,255,255]),
np.array([35,255,255]),
np.array([80,255,255]),
np.array([130,255,255])]
colourindex = 0
def showimage(img, title = "CV image"):
# Boilerplate image show in window
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def overlay(img1, img2, pos):
# img1 is the main image
# img2 is an overlay with black background
# pos is the (row, column) to add the overlay at
# make mask from thresholding img2
# invert for negmask
# make blacked out backgroudn from bitwise and with negmask
# add overlay to img with bitwise and, mask
ol_rows, ol_columns, ol_depth = img2.shape
ol_top, ol_left = pos
roi = img1[ol_top:ol_top+ol_rows,ol_left:ol_left+ol_columns]
overlaygray = cv2.cvtColor( img2, cv2.COLOR_BGR2GRAY )
ret, overlaymask = cv2.threshold( overlaygray, 10, 255, cv2.THRESH_BINARY )
overlaymask_inv = cv2.bitwise_not( overlaymask )
roi_bg = cv2.bitwise_and( roi, roi, mask = overlaymask_inv )
roi_fg = cv2.bitwise_and( img2, img2, mask = overlaymask )
combined = cv2.add( roi_bg, roi_fg )
img1[ol_top:ol_top+ol_rows,ol_left:ol_left+ol_columns] = combined
def takepicture():
c = cv2.VideoCapture(0)
time.sleep(2)
c.grab()
time.sleep(1)
retval, img = c.retrieve()
return img
def pipicture(picam):
picam.capture('image.jpg')
def arraycapture(picam, array):
picam.capture(array, format="bgr")
def smartthreshold(img, val):
return cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, val, 1)
def colourmask(img, index):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# red ball ~178, 128, 245 - 160-180,100-255,50-255
# yellow ball 32, 145, 237 - 20-40,100-200,0-255
# green ball 73, 211, 180 - 60-80,100-255,50-255
# blue ball 109, 235, 182 - 80-120,150,255,50-255
lower_bound = lower_bounds[index]
upper_bound = upper_bounds[index]
print lower_bound
print upper_bound
mask = cv2.inRange(hsv, lower_bound, upper_bound)
res = cv2.bitwise_and(img,img, mask= mask)
return (mask, res)
def erode(img):
kernel = np.ones((5,5), np.uint8) # 5,5
eroded = cv2.erode(img, kernel, iterations = 1)
return eroded
def main():
showme = "masked"
if (len(sys.argv) > 1):
colourindex = int(sys.argv[1])
else:
colourindex = 0
print("BALL CALIBRATION v0.1")
print("Commands:")
print(" lh-/+: Change lower hue bound")
print(" s-/+: Change lower saturation bound")
print(" v-/+: Change lower value bound")
print(" rb/yb/gb/bb: Change ball colour")
print(" r: Show raw camera input")
print(" m: Show masked camera input")
print(" p: Print current bounds")
print(" x: Exit")
picam = picamera.PiCamera()
picam.resolution = (300, 240)
picam.awb_mode = 'off'
# picam.awb_gains = (1.2, 2.4)
with open("rbgains.txt") as f:
content = f.readlines()
content = [x.strip() for x in content]
redgain = float(content[0][2:])
bluegain = float(content[1][2:])
picam.awb_gains = (redgain, bluegain)
time.sleep(1)
print("speed %f" % (picam.shutter_speed) )
# picam.exposure_mode = 'off'
picam.exposure_compensation = 0
picam.exposure_mode = 'off'
time.sleep(1)
while(True):
cmd = raw_input("Command? ")
cv2.destroyAllWindows()
if (cmd == "x"):
quit()
elif (cmd == "s+"):
lower_bounds[colourindex][1] = lower_bounds[colourindex][1] + 10
elif (cmd == "s-"):
lower_bounds[colourindex][1] = lower_bounds[colourindex][1] - 10
elif (cmd == "v+"):
lower_bounds[colourindex][2] = lower_bounds[colourindex][2] + 10
elif (cmd == "v-"):
lower_bounds[colourindex][2] = lower_bounds[colourindex][2] - 10
elif (cmd == "lh+"):
lower_bounds[colourindex][0] = lower_bounds[colourindex][0] + 5
elif (cmd == "lh-"):
lower_bounds[colourindex][0] = lower_bounds[colourindex][0] - 5
elif (cmd == "uh+"):
upper_bounds[colourindex][0] = upper_bounds[colourindex][0] + 5
elif (cmd == "uh-"):
upper_bounds[colourindex][0] = upper_bounds[colourindex][0] - 5
elif (cmd == "rb"):
colourindex = 0
elif (cmd == "yb"):
colourindex = 1
elif (cmd == "gb"):
colourindex = 2
elif (cmd == "bb"):
colourindex = 3
elif (cmd == "p"):
print lower_bounds
print upper_bounds
elif (cmd == "r"):
showme = "raw"
elif (cmd == "m"):
showme = "masked"
captureArray = PiRGBArray(picam)
arraycapture(picam, captureArray)
# img = cv2.imread("blue_ball.JPG", -1)
# img = cv2.imread("hackspace4.jpg", -1)
# img = cv2.imread("image.jpg", -1)
img = captureArray.array
# make a mask of ball colours according to argument
mask, res = colourmask(img, colourindex)
# clean up the mask using blurring, erosion etc.
mask = cv2.medianBlur(mask,15)
# mask = erode(mask)
# mask the image with it, for fun
res = cv2.bitwise_and(img, img, mask = mask)
# take a deep copy as findContours messes with image we give it
contourmask = np.copy(mask)
# find the contours of the mask
_, contours, hierarchy = cv2.findContours(contourmask, 1, 2)
print len(contours)
# for each contour, find centroid and blob on image
for cnt in contours:
# draw contour in blue
cv2.drawContours(res,contours,-1,(255,128,0),1)
# find area, ditch ones that are too small
area = cv2.contourArea(cnt)
print area
if (area > 100):
# find aspect ratio, area ratio of contour
# if aspect ratio ~1 and area ratio ~0.75, it's round
# we could use cv2.minEnclosingCircle() but that feels like cheating
area = cv2.contourArea(cnt)
x,y,w,h = cv2.boundingRect(cnt)
rect_area = w*h
extent = float(area)/rect_area
aspect = float(w)/h
print "extent = " + str(extent)
print "aspect = " + str(aspect)
# centroid!
M = cv2.moments(cnt)
centroid_x = int(M['m10']/M['m00'])
centroid_y = int(M['m01']/M['m00'])
cv2.circle(img, (centroid_x,centroid_y), 3, (0,255,0), 1);
if (extent > 0.65 and extent < 0.9 and aspect > 0.85 and aspect < 1.15):
cv2.rectangle(img, (x, y), (x+w, y+h), (0,255,0), 1);
else:
cv2.rectangle(img, (x, y), (x+w, y+h), (0,0,255), 1);
cv2.startWindowThread()
cv2.namedWindow("preview")
if (showme == "raw"):
cv2.imshow('preview', img)
else:
cv2.imshow('preview', res)
# cv2.imshow('image', img)
# cv2.imshow('mask', mask)
# cv2.waitKey(0)
quit()
if __name__ == "__main__":
main()