-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathled_track.py
executable file
·298 lines (257 loc) · 9.73 KB
/
led_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#!/usr/bin/env python
import numpy as np
import cv2
import sys
from picamera.array import PiRGBArray
from picamera import PiCamera
import time
import threading
import logging
import argparse
# Set up logging
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
class LedTrack(object):
"""Detect and track led beacons"""
def __init__(
self,
resolution=(640, 480),
fps=30,
h_flip=True,
v_flip=True,
thresh_min=240,
thresh_max=255,
debug=False
):
# Tuple of X and Y video resolution (320,240) default
self.resolution = resolution
# Frames per second request in video feed
self.fps = fps
# Flag set when we want the video feed flipped horizontally
self.h_flip = h_flip
# Flag set when we want the video feed flipped vertically
self.v_flip = v_flip
# Min value for pixel thresholding
self.thresh_min = thresh_min
# Max value for pixel thresholding
self.thresh_max = thresh_max
# Number of images/frames to ignore before we say not tracked anymore
self.max_tracked_gap = 10
# Flag set when the led has been found in the frame
self.tracked = False
# Horizontal pixel of tracked led
self.blob_pixel_pos = 0
# Pixel size of tracked led
self.blob_pixel_size = 0
# Horizontal field of view of the Pi camera module
self.camera_h_fov = 53.0
# Thread locking member variable
self.lock = threading.Lock()
# Handle to camera looping thread
self.thread = None
# Flag set when we want the process to exit
self.exit = False
# Flag set when we want the visual output (note, must be run in X)
self.debug = True
def get_current_led_pos(self):
""" Return tracking status and horizontal position
Angle returned is the angle in degrees where middle of view is 0.0,
left is -ve and right is +ve """
# Flag denoting whether the blob was found
tracked = False
# Angle in degrees, 0.0 is middle of view.
angle_in_degs = 0.0
# Blob size in pixels
size = 0
# Grab the thread lock
self.lock.acquire()
try:
tracked = self.tracked
if tracked:
# Linearly interpolate angle from X pixel position
ratio = self.blob_pixel_pos / self.resolution[0]
angle_in_degs = (self.camera_h_fov * ratio) - (self.camera_h_fov / 2.0)
# Estimate distance to LED using blob pixel size
size = self.blob_pixel_size
finally:
self.lock.release()
# Return tracked state and position
return tracked, angle_in_degs, size
def search_image(
self,
detector,
image_original,
thresh_min,
thresh_max,
no_images_since_tracked
):
"""Look in individual image for the IR LED"""
# Return False if user has indicated they wish to quit
return_value = True
# load the image and convert it to grayscale
image_gray = cv2.cvtColor(image_original, cv2.COLOR_BGR2GRAY)
# Invert image black to white
ret, image_gray = cv2.threshold(
image_gray,
thresh_min,
thresh_max,
cv2.THRESH_BINARY_INV
)
# Detect blobs on grayscale image
key_points = detector.detect(image_gray)
# Grab the thread lock
self.lock.acquire()
try:
# Test whether we found any blobs
# Max blob size in THIS frame.
max_key_point_size = 0
tracked = False
for key_point in key_points:
# Flag set when the led has been found in the frame
tracked = True
# Tracked, reset counter
no_images_since_tracked = 0
if max_key_point_size < key_point.size:
# Horizontal pixel of tracked led
self.blob_pixel_pos = key_point.pt[0]
# Pixel size of tracked led
self.blob_pixel_size = key_point.size
# Remember largest blob size
max_key_point_size = key_point.size
# If not tracked, count number of frames since last found
if not tracked:
no_images_since_tracked = no_images_since_tracked+1
# If not tracked in a set number of images, reset tracked to False
if no_images_since_tracked >= self.max_tracked_gap:
# effectively lost tracking
self.tracked = False
else:
# We found it, so flag it as tracked
self.tracked = True
if self.debug:
# Draw detected blobs as red circles.
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures the size
# of the circle corresponds to the size of blob
key_point_colour = (0, 0, 255)
image_key_points = cv2.drawKeypoints(
image_gray,
key_points,
np.array([]),
key_point_colour,
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS
)
# Show keypoints
cv2.imshow("Keypoints", image_key_points)
cv2.imshow("Original", image_original)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q") or key == ord("Q"):
self.exit = True
if self.exit:
return_value = False
finally:
# Release the thread lock
self.lock.release()
return return_value, no_images_since_tracked
def tracking_loop(self):
"""
Main tracking loop. Each frame is searched for a particular IR LED.
If found, we store its position in member variables ready for another
module to ask this module for the current LED position.
"""
# Initialize the camera
camera = PiCamera()
# Initialise the default thresholding values
thresh_min = 240
thresh_max = 255
# Grab the thread lock
self.lock.acquire()
try:
# Set the camera parameters/properties
camera.hflip = self.h_flip
camera.vflip = self.v_flip
camera.resolution = self.resolution
camera.framerate = self.fps
# Grab a reference to the raw camera capture
raw_capture = PiRGBArray(camera, size=self.resolution)
# Grab the thresholding values ready for repeated use
thresh_min = self.thresh_min
thresh_max = self.thresh_max
finally:
# Release the thread lock
self.lock.release()
# allow the camera to warmup
time.sleep(0.1)
# Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()
# Change thresholds
params.minThreshold = 10
params.maxThreshold = 200
# Filter by Area.
params.filterByArea = True
params.minArea = 10
params.maxArea = 150
# Filter by Circularity
params.filterByCircularity = True
params.minCircularity = 0.1
# Filter by Convexity
params.filterByConvexity = True
params.minConvexity = 0.87
# Filter by Inertia
params.filterByInertia = True
params.minInertiaRatio = 0.2
# Create simple Blob Detector with parameter list
detector = cv2.SimpleBlobDetector_create(params)
# Remember number of frames since last successful track
no_images_since_tracked = 0
# capture frames from the camera
frames = camera.capture_continuous(
raw_capture,
format="bgr",
use_video_port=True
)
for frame in frames:
# grab the raw NumPy array representing the image
image_original = frame.array
# Pass original image into searching method
return_value, no_images_since_tracked = self.search_image(
detector,
image_original,
thresh_min,
thresh_max,
no_images_since_tracked
)
# clear the stream in preparation for the next frame
raw_capture.truncate(0)
# Test whether user wants to quit
if not return_value:
break
def start_tracker(self):
"""Kick off new thread listening for events"""
self.thread = threading.Thread(target=self.tracking_loop)
self.thread.start()
def stop_tracker(self):
"""Stop tracking thread gracefully"""
# Grab the thread lock
self.lock.acquire()
try:
# Set member variable True so tracking loop quits
self.exit = True
finally:
self.lock.release()
if __name__ == '__main__':
# If this module is run independantly, simply instantiate
# the tracker class and kick off its tracking loop.
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('-debug', action='store_true', default=False)
tracker = LedTrack()
tracker.start_tracker()
# Loop set number of times
for n in range(0, 10):
# Sleep for a second
time.sleep(1.0)
tracked, angle_in_degs, size = tracker.get_current_led_pos()
if tracked:
logging.info("size = {0}, Angle = {1}".format(size, angle_in_degs))
else:
logging.info("Not found")
tracker.stop_tracker()