-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_trans.py
221 lines (191 loc) · 7.56 KB
/
main_trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
from scipy import stats
import pickle
import time
import sys
import matplotlib.pyplot as plt
import joblib
import keras
from bayes_opt import BayesianOptimization
from data_preprocessing import get_spikes_with_history
from metrics import get_R2
from metrics import get_rho
import transformer
from decoders import GRUDecoder, LSTMDecoder, CNNDecoder
############### PARAMETER SETTING ###############
#'s1': Somatosensory Cortex
#'m1': Motor Cortex
#'hc': Hippocampus
type = 'hc'
mode = 'cross validation'
############### DATA PROCESS ###############
# Import data
folder = '/content/drive/MyDrive/Decoding_Data/'
with open(folder + 'example_data_'+type+'.pickle', 'rb') as f:
if type == 'hc':
neural_data, pos_binned = pickle.load(f, encoding='latin1')
else:
neural_data, vels_binned = pickle.load(f, encoding='latin1')
# Choose how many bins for one prediction
if type == 's1':
bins_before = 6
bins_current = 1
bins_after = 6
if type == 'm1':
bins_before = 13
bins_current = 1
bins_after = 0
if type == 'hc':
bins_before = 4
bins_current = 1
bins_after = 5
# Define input and output of our model
if type == 'hc':
y = pos_binned
else:
y = vels_binned
# Remove neurons with too few spikes in HC dataset
if type == 'hc':
nd_sum = np.nansum(neural_data, axis=0)
rmv_nrn = np.where(nd_sum < 100)
neural_data = np.delete(neural_data, rmv_nrn, 1)
# Format for recurrent networks
x = get_spikes_with_history(neural_data, bins_before, bins_after, bins_current)
# Remove time bins with no output (y value)
if type == 'hc':
rmv_time = np.where(np.isnan(y[:, 0]) | np.isnan(y[:, 1]))
x = np.delete(x, rmv_time, 0)
y = np.delete(y, rmv_time, 0)
x = x[: int(.8 * x.shape[0]), :, :]
y = y[: int(.8 * y.shape[0]), :]
# s1: x(61339, 13, 52) y(61339, 2)
# m1: x(25299, 14, 164) y(25299, 2)
# hc: x(22283, 10, 46) y(22283, 2)
# Train/Val/Test split
valid_range_all=[[0,.1],[.1,.2],[.2,.3],[.3,.4],[.4,.5],[.5,.6],[.6,.7],[.7,.8],[.8,.9],[.9,1]]
testing_range_all=[[.1,.2],[.2,.3],[.3,.4],[.4,.5],[.5,.6],[.6,.7],[.7,.8],[.8,.9],[.9,1],[0,.1]]
training_range_all=[[[.2,1]],[[0,.1],[.3,1]],[[0,.2],[.4,1]],[[0,.3],[.5,1]],[[0,.4],[.6,1]],
[[0,.5],[.7,1]],[[0,.6],[.8,1]],[[0,.7],[.9,1]],[[0,.8]],[[.1,.9]]]
num_folds=len(valid_range_all)
# R2 values
mean_r2=np.empty(num_folds)
# Actual data
y_test_all=[]
y_train_all=[]
y_valid_all=[]
# Test predictions
y_pred_all=[]
# Training predictions
y_train_pred_all=[]
# Validation predictions
y_valid_pred_all=[]
t1=time.time()
num_examples=x.shape[0]
############### TRAIN/VAL/TEST ###############
for i in range(num_folds):
##### DATASPLIT ######
# Get testing set for this fold
testing_range=testing_range_all[i]
testing_set=np.arange(np.int(np.round(testing_range[0]*num_examples))+bins_before,np.int(np.round(testing_range[1]*num_examples))-bins_after)
# Get validation set for this fold
valid_range=valid_range_all[i]
valid_set=np.arange(np.int(np.round(valid_range[0]*num_examples))+bins_before,np.int(np.round(valid_range[1]*num_examples))-bins_after)
# Get training set for this fold.
training_ranges=training_range_all[i]
for j in range(len(training_ranges)):
training_range=training_ranges[j]
if j==0:
training_set=np.arange(np.int(np.round(training_range[0]*num_examples))+bins_before,np.int(np.round(training_range[1]*num_examples))-bins_after)
if j==1:
training_set_temp=np.arange(np.int(np.round(training_range[0]*num_examples))+bins_before,np.int(np.round(training_range[1]*num_examples))-bins_after)
training_set=np.concatenate((training_set,training_set_temp),axis=0)
# Get training data
x_train=x[training_set,:,:]
y_train=y[training_set,:]
# Get testing data
x_test=x[testing_set,:,:]
y_test=y[testing_set,:]
# Get validation data
x_valid=x[valid_set,:,:]
y_valid=y[valid_set,:]
# Z-score inputs
x_train_mean=np.nanmean(x_train,axis=0)
x_train_std=np.nanstd(x_train,axis=0)
x_train=(x_train-x_train_mean)/x_train_std
x_test=(x_test-x_train_mean)/x_train_std
x_valid=(x_valid-x_train_mean)/x_train_std
# Zero-center outputs
y_train_mean=np.nanmean(y_train,axis=0)
y_train=y_train-y_train_mean
y_test=y_test-y_train_mean
y_valid=y_valid-y_train_mean
##### DECODING ######
# Validation settings
callbacks_list = [
# Early stopping
keras.callbacks.EarlyStopping(
monitor='accuracy',
patience=1
),
# Save model
keras.callbacks.ModelCheckpoint(
filepath = '/content/drive/MyDrive/Spikes/trans/my_model.h5',
monitor='val_loss',
save_best_only=True
)]
# Get hyperparameters using Bayesian optimization based on validation set R2 values
# Define a function that returns the metric we are trying to optimize (R2 value of the validation set)
# as a function of the hyperparameter we are fitting
# def evaluate(frac_dropout,n_epochs, n_heads):
# # n_layers=int(n_layers)
# frac_dropout=float(frac_dropout)
# n_epochs=int(n_epochs)
# n_heads=int(n_heads)
# model=transformer.CNNTransDecoder(chans=32,dropout=frac_dropout,num_epochs=n_epochs,num_heads=n_heads,verbose=1)
# model.fit(x_train,y_train,x_valid,y_valid,callbacks_list)
# y_valid_predicted=model.predict(x_valid)
# return np.mean(get_R2(y_valid,y_valid_predicted))
# Do bayesian optimization
# BO = BayesianOptimization(evaluate, {'frac_dropout': (0,.5), 'n_epochs': (2,8), 'n_heads': (2,8)})
# BO.maximize(init_points=20, n_iter=1, kappa=10)
# best_params=BO.res['max']['max_params']
# frac_dropout=float(best_params['frac_dropout'])
# n_epochs=np.int(best_params['n_epochs'])
# # n_layers=np.int(best_params['n_layers'])
# n_heads=np.int(best_params['n_heads'])
frac_dropout=0.1
n_epochs=5
n_layers=1
n_heads=8
# Run model with above hyperparameters
# model=transformer.TransformerDecoder(num_layers=n_layers,dropout=frac_dropout,num_epochs=n_epochs,num_heads=n_heads,verbose=1,mode='SpatialTemporal')
# model=transformer.AttenGRUDecoder(num_units=400,dropout=frac_dropout,num_epochs=n_epochs,num_heads=n_heads,verbose=1)
model=transformer.CNNTransDecoder(chans=32,dropout=frac_dropout,num_epochs=n_epochs,num_heads=n_heads,verbose=1,mode='STT')
# model = GRUDecoder(units=400, dropout=0, num_epochs=5, verbose=1)
# model = LSTMDecoder(units=400, dropout=0, num_epochs=5, verbose=1)
# model = CNNDecoder(dropout=frac_dropout, num_epochs=n_epochs, verbose=1)
# model = transformer.TransGRUDecoder(num_units=400,dropout=frac_dropout,num_epochs=n_epochs,num_heads=n_heads,verbose=1)
model.fit(x_train,y_train,x_valid,y_valid,callbacks_list)
y_test_predicted=model.predict(x_test)
mean_r2[i]=np.mean(get_R2(y_test,y_test_predicted))
# Print test set R2 values
R2s=get_R2(y_test,y_test_predicted)
print('R2s:', R2s)
# Add predictions of training/validation/testing to lists (for saving)
y_pred_all.append(y_test_predicted)
y_train_pred_all.append(model.predict(x_train))
y_valid_pred_all.append(model.predict(x_valid))
print('mean_r2:', mean_r2)
print ("\n")
time_elapsed=time.time()-t1 # How much time has passed
save_folder = '/content/drive/MyDrive/Spikes/trans'
# Save results
with open(save_folder+type+'_results.pickle','wb') as f:
pickle.dump([mean_r2,y_pred_all,y_train_pred_all,y_valid_pred_all],f)
# Save ground truth results
with open(save_folder+type+'_ground_truth.pickle','wb') as f:
pickle.dump([y_test_all,y_train_all,y_valid_all],f)
# Print time
print("time_elapsed:",time_elapsed)