forked from DefTruth/CUDA-Learn-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelementwise.cu
183 lines (168 loc) · 8.7 KB
/
elementwise.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <vector>
#include <algorithm>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_bf16.h>
#include <cuda_fp8.h>
#include <torch/types.h>
#include <torch/extension.h>
#define WARP_SIZE 32
#define INT4(value) (reinterpret_cast<int4*>(&(value))[0])
#define FLOAT4(value) (reinterpret_cast<float4*>(&(value))[0])
#define HALF2(value) (reinterpret_cast<half2*>(&(value))[0])
#define BFLOAT2(value) (reinterpret_cast<__nv_bfloat162*>(&(value))[0])
#define LDST128BITS(value) (reinterpret_cast<float4*>(&(value))[0])
// -------------------------------------- FP32 --------------------------------------
// ElementWise Add
// grid(N/256), block(256)
// a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
__global__ void elementwise_add_f32_kernel(float* a, float* b, float* c, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) c[idx] = a[idx] + b[idx];
}
// ElementWise Add + Vec4
// grid(N/256), block(256/4)
// a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
__global__ void elementwise_add_f32x4_kernel(float* a, float* b, float* c, int N) {
int idx = 4 * (blockIdx.x * blockDim.x + threadIdx.x);
if (idx < N) {
float4 reg_a = FLOAT4(a[idx]);
float4 reg_b = FLOAT4(b[idx]);
float4 reg_c;
reg_c.x = reg_a.x + reg_b.x;
reg_c.y = reg_a.y + reg_b.y;
reg_c.z = reg_a.z + reg_b.z;
reg_c.w = reg_a.w + reg_b.w;
FLOAT4(c[idx]) = reg_c;
}
}
// -------------------------------------- FP16 --------------------------------------
// ElementWise Add
// grid(N/256), block(256)
// a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
__global__ void elementwise_add_f16_kernel(half* a, half* b, half* c, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) c[idx] = __hadd(a[idx], b[idx]);
}
// a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
__global__ void elementwise_add_f16x2_kernel(half* a, half* b, half* c, int N) {
int idx = 2 * (blockIdx.x * blockDim.x + threadIdx.x);
if (idx < N) {
half2 reg_a = HALF2(a[idx]);
half2 reg_b = HALF2(b[idx]);
half2 reg_c;
reg_c.x = __hadd(reg_a.x, reg_b.x);
reg_c.y = __hadd(reg_a.y, reg_b.y);
HALF2(c[idx]) = reg_c;
}
}
__global__ void elementwise_add_f16x8_kernel(half* a, half* b, half* c, int N) {
int idx = 8 * (blockIdx.x * blockDim.x + threadIdx.x);
// manual unroll and improve L2 cache hit rate.
// Only L2 cache: load 32 bytes in 1 memory issue (default)
// Enable L1 cache: load 128 bytes in 1 memory issue (-Xptxas -dlcm=ca)
// why try fp16x8 within 1 threads? ref: https://zhuanlan.zhihu.com/p/641639133
// 0. first, tid_0 load 32 bytes in 1 memory issue and cache data into L2 cache.
// 1. then, tid_1,...,tid_3 hit L2 cache and load data from L2 cache directly.
half2 reg_a_0 = HALF2(a[idx + 0]);
half2 reg_a_1 = HALF2(a[idx + 2]);
half2 reg_a_2 = HALF2(a[idx + 4]);
half2 reg_a_3 = HALF2(a[idx + 6]);
half2 reg_b_0 = HALF2(b[idx + 0]);
half2 reg_b_1 = HALF2(b[idx + 2]);
half2 reg_b_2 = HALF2(b[idx + 4]);
half2 reg_b_3 = HALF2(b[idx + 6]);
half2 reg_c_0, reg_c_1, reg_c_2, reg_c_3;
reg_c_0.x = __hadd(reg_a_0.x, reg_b_0.x);
reg_c_0.y = __hadd(reg_a_0.y, reg_b_0.y);
reg_c_1.x = __hadd(reg_a_1.x, reg_b_1.x);
reg_c_1.y = __hadd(reg_a_1.y, reg_b_1.y);
reg_c_2.x = __hadd(reg_a_2.x, reg_b_2.x);
reg_c_2.y = __hadd(reg_a_2.y, reg_b_2.y);
reg_c_3.x = __hadd(reg_a_3.x, reg_b_3.x);
reg_c_3.y = __hadd(reg_a_3.y, reg_b_3.y);
if ((idx + 0) < N) { HALF2(c[idx + 0]) = reg_c_0; }
if ((idx + 2) < N) { HALF2(c[idx + 2]) = reg_c_1; }
if ((idx + 4) < N) { HALF2(c[idx + 4]) = reg_c_2; }
if ((idx + 6) < N) { HALF2(c[idx + 6]) = reg_c_3; }
}
__global__ void elementwise_add_f16x8_pack_kernel(half* a, half* b, half* c, int N) {
int idx = 8 * (blockIdx.x * blockDim.x + threadIdx.x);
// temporary register(memory), .local space in ptx, addressable
half pack_a[8], pack_b[8], pack_c[8]; // 8x16 bits=128 bits.
// reinterpret as float4 and load 128 bits in 1 memory issue.
LDST128BITS(pack_a[0]) = LDST128BITS(a[idx]); // load 128 bits
LDST128BITS(pack_b[0]) = LDST128BITS(b[idx]); // load 128 bits
#pragma unroll
for (int i = 0; i < 8; i += 2) {
// __hadd2 for half2 x 4
HALF2(pack_c[i]) = __hadd2(HALF2(pack_a[i]), HALF2(pack_b[i]));
}
// reinterpret as float4 and store 128 bits in 1 memory issue.
if ((idx + 7) < N) { LDST128BITS(c[idx]) = LDST128BITS(pack_c[0]); }
}
// --------------------- PyTorch bindings for custom kernel -----------------------
#define STRINGFY(str) #str
#define TORCH_BINDING_COMMON_EXTENSION(func) \
m.def(STRINGFY(func), &func, STRINGFY(func));
#define CHECK_TORCH_TENSOR_DTYPE(T, th_type) \
if(((T).options().dtype() != (th_type))) { \
std::cout << "Tensor Info:" << (T).options() << std::endl; \
throw std::runtime_error("values must be "#th_type); \
}
#define TORCH_BINDING_ELEM_ADD(packed_type, th_type, element_type, n_elements) \
void elementwise_add_##packed_type( \
torch::Tensor a, torch::Tensor b, torch::Tensor c) { \
CHECK_TORCH_TENSOR_DTYPE(a, (th_type)) \
CHECK_TORCH_TENSOR_DTYPE(b, (th_type)) \
CHECK_TORCH_TENSOR_DTYPE(c, (th_type)) \
const int ndim = a.dim(); \
if (ndim != 2) { \
int N = 1; \
for (int i = 0; i < ndim; ++i) { N *= a.size(i); } \
dim3 block(256 / (n_elements)); \
dim3 grid((N + 256 - 1) / 256); \
elementwise_add_##packed_type##_kernel<<<grid, block>>>( \
reinterpret_cast<element_type*>(a.data_ptr()), \
reinterpret_cast<element_type*>(b.data_ptr()), \
reinterpret_cast<element_type*>(c.data_ptr()), N); \
} else { \
const int S = a.size(0); \
const int K = a.size(1); \
const int N = S * K; \
if ((K/(n_elements)) <= 1024) { \
dim3 block(K/(n_elements)); \
dim3 grid(S); \
elementwise_add_##packed_type##_kernel<<<grid, block>>>( \
reinterpret_cast<element_type*>(a.data_ptr()), \
reinterpret_cast<element_type*>(b.data_ptr()), \
reinterpret_cast<element_type*>(c.data_ptr()), N); \
} else { \
int N = 1; \
for (int i = 0; i < ndim; ++i) { N *= a.size(i); } \
dim3 block(256 / (n_elements)); \
dim3 grid((N + 256 - 1) / 256); \
elementwise_add_##packed_type##_kernel<<<grid, block>>>( \
reinterpret_cast<element_type*>(a.data_ptr()), \
reinterpret_cast<element_type*>(b.data_ptr()), \
reinterpret_cast<element_type*>(c.data_ptr()), N); \
} \
} \
}
TORCH_BINDING_ELEM_ADD(f32, torch::kFloat32, float, 1)
TORCH_BINDING_ELEM_ADD(f32x4, torch::kFloat32, float, 4)
TORCH_BINDING_ELEM_ADD(f16, torch::kHalf, half, 1)
TORCH_BINDING_ELEM_ADD(f16x2, torch::kHalf, half, 2)
TORCH_BINDING_ELEM_ADD(f16x8, torch::kHalf, half, 8)
TORCH_BINDING_ELEM_ADD(f16x8_pack, torch::kHalf, half, 8)
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
TORCH_BINDING_COMMON_EXTENSION(elementwise_add_f32)
TORCH_BINDING_COMMON_EXTENSION(elementwise_add_f32x4)
TORCH_BINDING_COMMON_EXTENSION(elementwise_add_f16)
TORCH_BINDING_COMMON_EXTENSION(elementwise_add_f16x2)
TORCH_BINDING_COMMON_EXTENSION(elementwise_add_f16x8)
TORCH_BINDING_COMMON_EXTENSION(elementwise_add_f16x8_pack)
}